Abstract:
A rope storage unit for storing an elevator rope during transportation and/or installation of the elevator rope includes a rope reel, formed by a rope wound in a spiral form and having a central axis; and a support frame provided with an inner space inside which the rope reel is positioned supported by the support frame such that it can in use be rotated in the inner space for unwinding the rope. The rope is a rod having a straight form when in rest state and elastically bendable away from the straight form, the rope being under substantial bending tension in the spiral form, and wherein the support frame comprises three or more rotatable support rollers delimiting the inner space and surrounding radially the rope reel. A method for installing an elevator rope implements the rope storage unit.
Abstract:
A method includes plumbing an elevator shaft, installing a lowermost first section of guide rail elements manually to walls of the shaft, arranging an upwards and downwards in the shaft with a first hoist movable lifting frame, arranging an upwards and downwards in the shaft with a second hoist movable installation platform provided with a guide apparatus, an installation apparatus and an alignment tool, drilling holes and fastening support brackets to the walls of the shaft with the installation apparatus, lifting guide rail elements with a third hoist from the lifting frame and guiding said guide rail elements into position with the guide apparatus, joining consecutive guide rail elements with the installation apparatus, and aligning opposite guide rail elements with the alignment tool and locking the support brackets with the installation apparatus.
Abstract:
The apparatus includes a positioning unit and an alignment unit. The positioning unit extends across the elevator shaft in a second direction and comprises at each end a first attachment mechanism movable in the second direction for supporting the positioning unit on opposite wall structures in the elevator shaft. The alignment unit extends across the elevator shaft in the second direction and is supported with support parts on each end portion of the positioning unit. Each end portion of the alignment unit is individually movable in relation to the positioning unit in a third direction perpendicular to the second direction. The alignment unit includes further at each end a second attachment mechanism movable in the second direction for supporting the alignment unit on opposite guide rails in the shaft. The second attachment mechanism includes a gripper for gripping on the guide rail.
Abstract:
The object of the invention is a method for installing an elevator in the construction phase of a building. The elevator comprises an elevator car adapted to move reciprocally in an elevator hoistway in the construction phase and a compensating weight, which is connected via a suspension beam to support the elevator car by means of at least one suspension member and also by means of diverting pulleys. The elevator has a temporary hoisting machine provided with a traction sheave, the hoisting machine being kept in its position for the whole duration of the construction phase of the building, and a traction member, such as a belt, rope or chain, which is adapted to transmit the rotational movement of the traction sheave into movement of the elevator car and of the compensating weight. During the construction time, the supporting and the moving of the elevator car are separated from each other. When taking the elevator into normal operation when the building is at its final height, the construction-time hoisting machine with its traction sheave and traction member is removed, and the new hoisting machine plus traction sheave and hoisting roping is installed into position.
Abstract:
An elevator has a safety controller to which several safety switch arrangements are connected. The safety controller is configured to cause the stop of the elevator motor and the activation of the motor brakes. A comparator is provided in the safety controller for the determination of the status of the safety chain. The comparator is connected with a memory for storing at least one resistor reference value, which comparator is configured to output a safety chain status signal in dependence of comparison of a measured resistance value with the resistor reference value. Each of said safety switch arrangements includes at least one first resistor and a safety switch which are connected in series. The value of the first resistor is different in at least some safety switch arrangements, preferably in all safety switch arrangements. Each safety switch arrangement includes at least a second resistor connected in parallel with the safety switch, which second resistor has a higher value than the first resistor. The detection of a short circuit as well as of the opening of a safety switch arrangement are allowed.
Abstract:
A guide rail installation arrangement and a method for installing guide rails are disclosed. The guide rail installation arrangement for installing guide rails in an elevator shaft includes at least one vertically moveable working platform within the elevator shaft for reaching the installation height and a material hoist for moving guide rail sections for installing the guide rail sections. The guide rail installation arrangement further includes a transport frame for transporting guide rail sections vertically within the elevator shaft and a frame hoist that is attachable to the transport frame for vertically moving the transport frame and for optionally moving the guide rail sections for loading the guide rail sections into the transport frame.
Abstract:
A material transport arrangement for transporting transportable material in an elevator shaft and a material transport method are disclosed. The arrangement includes a pair of elevator car guide rails and a hoisting system mounted in the elevator shaft above the height to which transportable material is to be transported, for providing a pulling force to move the transportable material. The arrangement includes a pair of lower auxiliary guide rails for guiding the movement of transportable material between a loading position and the pair of elevator car guide rails, a pair of upper auxiliary guide rails at a height above the pair of lower auxiliary guide rails for guiding the movement of transportable material between the pair of elevator car guide rails and an unloading position, and a guide configured to be moveable along the pair of lower auxiliary guide rails, the pair of elevator car guide rails and the pair of upper auxiliary guide rails, and being removably attachable to the hoisting system and to the transportable material to move the transportable material.