Abstract:
A heater includes: a planar heat generator; a power supply circuit that controls supply of power to the planar heat generator; a plurality of temperature sensors that is provided on the planar heat generator and measures a temperature; and a hardware processor that detects abnormality of the temperature sensor in a case where a difference in temperature measured by each of two of the temperature sensors out of the plurality of temperature sensors exceeds an abnormality threshold value after a predetermined waiting time has elapsed since the supply of power to the planar heat generator is stopped.
Abstract:
An image forming device includes: a transfer unit transferring a toner image to a sheet; a resistance measurement member disposed on the upstream side in a sheet carriage direction of the transfer unit and for measuring resistance of the sheet; a charge elimination member disposed between the transfer unit and the resistance measurement member in the sheet carriage direction; a first voltage applying unit applying voltage for resistance measurement to the resistance measurement member; and a second voltage applying unit applying voltage of reverse bias of the voltage for resistance measurement to the charge elimination member. The width of a charge elimination region by the charge elimination member is wider than that of a charged region by the resistance measurement member in a direction perpendicular to the sheet carriage direction. The absolute value of the voltage for charge elimination is smaller than that of the voltage for resistance measurement.
Abstract:
An image forming device includes: a conductive roller that abuts an image carrier to rotate; a power supply circuit that applies voltage to the roller; a controller that controls the power supply circuit so as to apply the voltage to the roller over a predetermined detection period in a state in which the image carrier and the roller are rotated; a detection value acquirer that acquires a detection value acquired by the application of the voltage indicating a state of the image carrier in the detection period; and a state detector that detects a state of the image carrier on the basis of a plurality of acquired detection values, wherein a length of the detection period is set to a length at which both the numbers of rotations of the image carrier and the roller from a start of the detection period are integers.
Abstract:
A power supply apparatus includes: a first primary winding; a first AC voltage outputter connected to one side of the first primary winding so as to output a first AC voltage; a second AC voltage outputter connected to the other side of the first primary winding and capable of outputting a second AC voltage with an inverted phase of the first AC voltage; a first secondary winding that generates a third AC voltage by mutual induction of the first primary winding to which the first AC voltage and the second AC voltage are applied; a second primary winding having one side receiving an input of the second AC voltage and the other side connected to a fixed voltage; and a second secondary winding that generates a fourth AC voltage by mutual induction of the second primary winding to which the second AC voltage is applied.
Abstract:
An image forming apparatus includes: a photosensitive member rotated in a predetermined direction; a charging unit configured to charge a circumferential surface of the photosensitive member; a developing unit carrying a developer including toner and carriers, and including a developer bearing member configured to apply toner charged in a first polarity to the circumferential surface of the photosensitive member; a first voltage applying unit configured to apply a first voltage of the first polarity to the charging unit; a second voltage applying unit configured to apply a second voltage of the first polarity to the developer bearing member; a first voltage detecting unit configured to detect the first voltage; a second voltage detecting unit configured to detect the second voltage; and a controller, wherein the controller determines whether or not to make a second rate lower than a first rate according to the second voltage at a first timing.
Abstract:
A power controller includes: a measuring unit that measures outputs from plural power generating devices outputting power to a common load in parallel; an adjusting unit that controls the outputs of the plural power generating devices to adjust output voltages of the plural power generating devices to a predetermined value; and a matching control unit that calculates power-voltage characteristics of the plural power generating devices based on values measured by the measuring unit, determines a target value of output voltage to be shared by all the plural power generating devices based on the power-voltage characteristics thus calculated and corresponding to the whole parallel connection of the plural power generating devices, and allows the adjusting unit to match the predetermined value with the target value.
Abstract:
A control method for a three-phase DC brushless motor including a rotor that includes a plurality of magnetic poles and that is rotatable, a stator that includes a plurality of magnetic field generation parts to generate a magnetic field to be a driving source of the rotor, and a sensor to detect a magnetic pole of the rotor which pole passes through a first position in the stator is provided, the method including: detecting in which the sensor detects a first magnetic pole of the rotor which pole passes through the first position; estimating, based on a result of the detection of the first magnetic pole, time until the first magnetic pole reaches a second position in the stator; and controlling the plurality of magnetic field generation parts in such a manner that a suitable magnetic field is generated when the first magnetic pole passes through the second position.
Abstract:
A charge control device uses external electricity to charge a plurality of battery devices. A constant current source uses the external electricity to generate and adjust an output current amount to a constant target value. A selector selects one battery device from the plurality of battery devices and supplies output current from the constant current source to the one battery device. A measurer measures an amount of actual current flowing from the constant current source to the one battery device. An instructor monitors a measured value provided by the measurer and instructs the selector, when the measured value meets a condition for a reduction of charging current amount to be regarded as having occurred, to change a destination to which the output current of the constant current source is supplied from the one battery device to a different battery device.
Abstract:
A power controller includes: a measuring unit that measures outputs from plural power generating devices outputting power to a common load in parallel; an adjusting unit that controls the outputs of the plural power generating devices to adjust output voltages of the plural power generating devices to a predetermined value; and a matching control unit that calculates power-voltage characteristics of the plural power generating devices based on values measured by the measuring unit, determines a target value of output voltage to be shared by all the plural power generating devices based on the power-voltage characteristics thus calculated and corresponding to the whole parallel connection of the plural power generating devices, and allows the adjusting unit to match the predetermined value with the target value.
Abstract:
The image forming device includes a reception unit, an image forming unit, a switching unit, a detection unit, and a charging unit. The switching unit switches the image forming device between a first mode in which the reception unit is not supplied a voltage from a power source, is supplied power from a secondary battery, and receives image forming requests, and a second mode in which the image forming unit is supplied the voltage and performs image forming. The detection unit detects a value of an amount of energy of the secondary battery. In the second mode, the charging unit charges the secondary battery by supplying the voltage to the secondary battery when the value is equal to or less than a threshold value, and the charging unit boosts the voltage and supplies the boosted voltage to the secondary battery when the value is greater than the threshold value.