Abstract:
An improved method and related apparatus for detecting bacteria viability and drug effects using metabolic monitoring. A fluorescent material which is quenched by oxygen is co-localized with the target bacteria, and fluorescence signal is detected at the co-localized places. In some embodiments, the fluorescent material is a fluorescent nanoparticle mixed with the target bacteria in the sample, and co-localization is enhanced using centrifugation, electrophoresis, microflow path modified with antibodies, magnetic force, etc. In some other embodiments, the fluorescent material is a fluorescent film or 3-D matrix immobilized in the bacterial culture chamber, and bacteria in the sample is gathered into localized regions of the bacteria culture chamber where the fluorescent film or 3-D matrix is present by ways of centrifugation, electrophoresis or microflow path. Plasmonic nanoparticles with a metal core and plasmonic film with a metal film may be used as the fluorescent nanoparticles and fluorescent film.
Abstract:
A biosensor using a decoupled microfluidic device, which has a capture chamber and a detection chamber separate from and in fluid communication with each other. The sensing method is based on particle aggregation via homogeneous reactions, by employing microparticles having antibodies on their surfaces which can form aggregates through antigen mediation. Either size-separation or magnetic based separation is used to separate aggregates from single microparticles; the aggregates are later dissociated and the resulting single microparticles are counted to measure the amount of the antigen. Another biosensor uses a decoupled microfluidic device with a capture chamber and a detection chamber, and a 3-D structure in the capture camber to increase immobilized antibody concentration. Immunoreaction efficiency is improved by increasing the number of antibody per reaction volume in the capture chamber.
Abstract:
A DNA ligand capable of structural changes upon binding to a target is used as a molecular switch with a SPFS (surface plasmon field-enhanced fluorescence spectroscopy) biosensor to realize one-step SPFS biosensing with rapid turnaround time. The SPFS biosensor has a thin metal film on a prism; when a light of a certain wavelength irradiates on the prism at a certain angle, a strong electrical field is generated at the surface of the metal film. The DNA is immobilized on the metal film surface with its free terminal modified with a fluorescent marker. Without the target, the DNA is folded and the fluorescent marker is located in the region of metal quenching near the metal surface. Upon binding to the target, the DNA is extended and the fluorescent marker is located in the region of enhanced electric field near the metal surface and emits a strong fluorescent signal.
Abstract:
A biosensor using a decoupled microfluidic device, which has a capture chamber and a detection chamber separate from and in fluid communication with each other. The sensing method is based on particle aggregation via homogeneous reactions, by employing microparticles having antibodies on their surfaces which can form aggregates through antigen mediation. Either size-separation or magnetic based separation is used to separate aggregates from single microparticles; the aggregates are later dissociated and the resulting single microparticles are counted to measure the amount of the antigen. Another biosensor uses a decoupled microfluidic device with a capture chamber and a detection chamber, and a 3-D structure in the capture camber to increase immobilized antibody concentration. Immunoreaction efficiency is improved by increasing the number of antibody per reaction volume in the capture chamber.
Abstract:
A DNA detection method combines DNAzyme reactions and on-chip isotachophoresis (ITP). A mixture of sample containing a target DNA and a DNAzyme sensor which is either (1) a catalytic molecular beacon or (2) a binary DNAzyme and a probe is loaded into a trailing electrolyte (TE) reservoir of a microfluidic chip. In the presence of the target DNA, the catalytic molecular beacon or the probe is cleaved to generate a fluorescent fragment. Enhanced DNAzyme reaction occurs at the TE-to-LE interface. Fluorescent signal from cleaved catalytic molecular beacon or probe is detected either at the location where DNAzyme reaction occurs or at a separate location. In the latter case, the microfluidic chip has a separation region containing a capture gel or a sieving matrix which allows the fluorescent fragment to pass through but captures or traps the uncleaved catalytic molecular beacon or probe.