Spectral imaging
    1.
    发明授权

    公开(公告)号:US10282870B2

    公开(公告)日:2019-05-07

    申请号:US15509065

    申请日:2015-10-10

    Abstract: A system includes memory (420) with instructions for at least one of processing spectral CT projection data to mitigate at least one of noise of the spectral CT projection data or a noise induced bias of the spectral CT projection data or generating a decomposition algorithm that mitigates the noise induced bias of the spectral CT projection data. The system further includes a processor (418) that executes the instructions and at least one of processes the spectral CT projection data or generates the decomposition algorithm and decomposes the spectral CT projection data to basis materials. The system further includes a reconstructor (434) that reconstructs the basis materials, thereby generating spectral images.

    Dynamic bowtie filter and methods of using the same

    公开(公告)号:US11197654B2

    公开(公告)日:2021-12-14

    申请号:US16644646

    申请日:2018-09-05

    Abstract: An imaging system (100) includes a radiation source (708) that emits radiation that traverses an examination region (706), a radiation detector array (716) with a plurality of detectors (1104N) that detect the radiation that traverses the examination region, a dynamic bowtie filter (718) between the radiation source and the examination region, a first motor (7221) and a second motor (7222), and a controller (724). The dynamic bowtie filter includes a first half wedge (7181) and a second half wedge (7182). The first motor is in mechanical communication with the first half wedge and moves the first half wedge and the second motor is in mechanical communication with the second half wedge and moves the second half wedge. The controller independently controls the first and second motors to move the first and second half wedges.

    Radiation beam intensity profile shaper

    公开(公告)号:US09775572B2

    公开(公告)日:2017-10-03

    申请号:US14647568

    申请日:2013-11-28

    Abstract: An imaging system (500) includes a focal spot (510) that rotates along a path around an examination region (506) and emits radiation. A collimator (512) collimates the radiation, producing a radiation beam (516) that traverses a field of view (520) of the examination region and a subject or object therein. A detector array (522), located opposite the radiation source, across the examination region, detects radiation traversing the field of view and produces a signal indicative of the detected radiation. A beam shaper (524), located between the radiation source and the collimator, rotates in coordination with the focal spot and defines an intensity profile of the radiation beam. The beam shaper includes a plurality of elongate x-ray absorbing elements (606) arranged parallel to each other along a transverse direction with respect to a direction of the beam, separated from each other by a plurality of material free regions (604).

Patent Agency Ranking