Abstract:
The present disclosure relates to a chromium-aluminum binary alloy with excellent corrosion resistance and a method of producing the same, and more particularly to a chromium-aluminum binary alloy with excellent corrosion resistance, including: 1 to 40% by weight of aluminum (Al), the balance of chromium (Cr), and other unavoidable impurities with respect to a total weight of the alloy, and a method of producing a chromium-aluminum binary alloy with excellent corrosion resistance, the method including: (Step 1) mixing and melting a raw material comprising: 1 to 40% by weight of aluminum (Al), the balance of chromium (Cr), and other unavoidable impurities with respect to a total weight of the alloy; and (Step 2) solution treating the alloy melted in Step 1. The chromium-aluminum binary alloy may be easily produced and has ductility, thus being highly applicable as a coating material for a material requiring high-temperature corrosion resistance and wear resistance.
Abstract:
A uranium dioxide nuclear fuel pellet has about 50 to about 400 μM (with respect to a 3-dimentional size) microcells formed of a ceramic material having a chemical attraction with fission products generated in the nuclear fuel pellet to absorb and trap the fission products, such that the extraction of the fission product may be retrained in a normal operation condition and that the performance of the nuclear fuel may be enhanced by mitigating PCI. In addition, highly radioactive fission products including Cs and I having a large generation amount or a long half-life enough to affect the environments can be trapped in the pellet in an accident condition, without being released outside.
Abstract:
Disclosed are a zirconium alloy for a nuclear fuel cladding having a good oxidation resistance in a severe reactor operation condition and a method of preparing zirconium alloy nuclear fuel claddings by using thereof. The zirconium alloy includes 1.8 to 2.0 wt % of niobium (Nb); at least one element selected from iron (Fe), chromium (Cr) and copper (Cu); 0.1 to 0.15 wt % of oxygen (O); 0.008 to 0.012 wt % of silicon (Si) and a remaining amount of zirconium (Zr). The amount of Fe is 0.1 to 0.4 wt %, the amount of Cr is 0.05 to 0.2 wt %, and the amount of Cu is 0.03 to 0.2 wt %. A good oxidation resistance of the nuclear fuel cladding may be confirmed under a severe reactor operation condition at an accident condition as well as a normal operating condition of a reactor, thereby improving economic efficiency and safety.
Abstract:
Disclosed are a zirconium alloy for a nuclear fuel cladding having a good oxidation resistance in reactor accident conditions, a zirconium alloy nuclear fuel cladding prepared by using thereof and a method of preparing the same. The zirconium alloy includes 1.0 to 1.2 wt % of niobium (Nb); at least one element selected from tin (Sn), iron (Fe) and chromium (Cr); 0.02 to 0.1 wt % of copper (Cu); 0.1 to 0.15 wt % of oxygen (0); 0.008 to 0.012 wt % of silicon (Si) and a remaining amount of zirconium (Zr). The amount of Sn is 0.1 to 0.3 wt %, the amount of Fe is 0.3 to 0.8 wt %, and the amount of Cr is 0.1 to 0.3 wt %. A good oxidation resistance of the nuclear fuel cladding may be confirmed under accident conditions as well as normal operating conditions of a reactor, thereby improving economic efficiency and safety.
Abstract:
The present disclosure relates to a chromium-aluminum binary alloy with excellent corrosion resistance and a method of producing the same, and more particularly to a chromium-aluminum binary alloy with excellent corrosion resistance. The chromium-aluminum binary alloy may be easily produced and has ductility, thus being highly applicable as a coating material for a material requiring high-temperature corrosion resistance and wear resistance.
Abstract:
A method of a nuclear fuel pellet including a thermal conductive metal and a nuclear fuel pellet prepared thereby. The method includes preparing an oxide nuclear fuel granule having about 30%-45% theoretical density, mixing the fuel granule with thermal conductive metal powder, compacting the fuel granule with which the thermal conductive metal powder is mixed to prepare a green pellet, and sintering the green pellet. In the method, the sintering may be performed under a reducing gas atmosphere that is the same as the commercial pellet preparing process. Thus, compatibility compared to existing commercial preparing processes may be superior. Also, since a liquefied oxide formation process and a reducing process are omitted, the distribution uniformity of the metal material within the pellet may be superior. Therefore, the nuclear fuel pellet in which the metal network and fine microstructure are uniformly distributed within the pellet may be prepared.
Abstract:
A uranium dioxide nuclear fuel pellet includes metallic microcells having a high protection capacity for fission products and a high thermal conductivity simultaneously arranged in the nuclear fuel pellet to trap fission products, such that extraction of fission products may be restrained in a normal operation condition and that the temperature of a nuclear fuel may be lowered to enhance the performance of the nuclear fuel, only to restrain extraction of radioactive fission products toward the environment in an accident condition to enhance a stability of the nuclear fuel pellet, and a fabricating method thereof.