摘要:
A fuel element has a ratio of area of fissionable nuclear fuel in a cross-section of the tubular fuel element perpendicular to the longitudinal axis to total area of the interior volume in the cross-section of the tubular fuel element that varies with position along the longitudinal axis. The ratio can vary with position along the longitudinal axis between a minimum of 0.30 and a maximum of 1.0. Increasing the ratio above and below the peak burn-up location associated with conventional systems reduces the peak burn-up and flattens and shifts the burn-up distribution, which is preferably Gaussian. The longitudinal variation can be implemented in fuel assemblies using fuel bodies, such as pellets, rods or annuli, or fuel in the form of metal sponge and meaningfully increases efficiency of fuel utilization.
摘要:
A nuclear fuel cell includes a net neutron-producing material, a neutron-consuming material, and a neutron-moderating material. Upon exposure of the net-producing material, the neutron-moderating material, and the neutron-consuming material to a neutron source, a ratio of the net neutron-producing material to (i) the neutron-consuming material and (ii) the neutron-moderating material is operable to convert neutrons into charged particles without producing net neutrons.
摘要:
A nuclear fuel rod for fast reactors includes a metallic fuel slug coated with a protective coating layer. In embodiments, a nuclear fuel rod for fast reactors includes a uranium and zirconium fuel slug having a single protective coating which is an oxide layer having a thickness in the range of 0.5 μm to 100 μm, and the protective coating layer may be configured to (i) prevent interdiffusion between the fuel slug and a cladding tube during fast reactor operation, and (ii) prevent a cladding tube from thinning during fission operation in a fast reactor.
摘要:
A method of a nuclear fuel pellet including a thermal conductive metal and a nuclear fuel pellet prepared thereby. The method includes preparing an oxide nuclear fuel granule having about 30%-45% theoretical density, mixing the fuel granule with thermal conductive metal powder, compacting the fuel granule with which the thermal conductive metal powder is mixed to prepare a green pellet, and sintering the green pellet. In the method, the sintering may be performed under a reducing gas atmosphere that is the same as the commercial pellet preparing process. Thus, compatibility compared to existing commercial preparing processes may be superior. Also, since a liquefied oxide formation process and a reducing process are omitted, the distribution uniformity of the metal material within the pellet may be superior. Therefore, the nuclear fuel pellet in which the metal network and fine microstructure are uniformly distributed within the pellet may be prepared.
摘要:
A sheathed, annular metal fuel system is described. A metal fuel pin system is described that includes an annular metal nuclear fuel alloy. A sheath may surround the metal nuclear fuel alloy, and a cladding may surround the sheath. A gas plenum may also be present. Mold arrangements and methods of fabrication of the sheathed, annular metal fuel are also described.
摘要:
Disclosed embodiments include fuel ducts, fuel assemblies, methods of making fuel ducts, methods of making a fuel assembly, and methods of using a fuel assembly.
摘要:
Exemplary embodiments provide automated nuclear fission reactors and methods for their operation. Exemplary embodiments and aspects include, without limitation, re-use of nuclear fission fuel, alternate fuels and fuel geometries, modular fuel cores, fast fluid cooling, variable burn-up, programmable nuclear thermostats, fast flux irradiation, temperature-driven surface area/volume ratio neutron absorption, low coolant temperature cores, refueling, and the like.
摘要:
A nuclear fission reactor device including a core having an array of fissile material and which is capable of being transported to and from the place of operation using conventional transportation vehicles. In a first embodiment, the fissile material is a uranium hydride enriched 15%-to-20% with U-235. In a second embodiment, the fissile material is a uranium oxide enriched to 18% to 20% with U-235.
摘要:
Example embodiments and methods may provide segmented waste rods capable of containing and disposing of waste generated from spent nuclear fuel, including elements left over from fuel that has been harvested for desired isotopes produced in the fuel. Example methods may provide methods for forming and using example embodiment segmented waste rods.
摘要:
Exemplary embodiments provide automated nuclear fission reactors and methods for their operation. Exemplary embodiments and aspects include, without limitation, re-use of nuclear fission fuel, alternate fuels and fuel geometries, modular fuel cores, fast fluid cooling, variable burn-up, programmable nuclear thermostats, fast flux irradiation, temperature-driven surface area/volume ratio neutron absorption, low coolant temperature cores, refueling, and the like.