Abstract:
Disclosed herein are an apparatus and method for gas leakage measurement in a high pressure reactor. In particular, the present invention relates to an apparatus for gas leakage measurement in a high pressure reactor including: a gas inlet; a first valve equipped to one side of the gas inlet; a flowmeter; a pressure gauge measuring an internal pressure of the reactor; a gas outlet; and a second valve, wherein if in internal pressure reaches a preset pressure by closing the second valve and injecting a gas to the reactor through the flowmeter in the state of opening the first valve, the gas leakage status in the reactor is measured through pressure changes in the pressure gauge after closing the first valve.
Abstract:
A system for preventing a catalyst from overheating is provided. The system includes: a first reactor filled with a catalyst at least in part and configured to receive reaction gas and produce product gas; and a second reactor configured to cool a catalyst discharged from the first reactor. The catalyst is circulated between the first reactor and the second reactor by injecting the catalyst cooled in the second reactor into the first rector.
Abstract:
Disclosed are an apparatus and a method for measuring the height of a solid bed in a high-temperature and high-pressure fluidized bed system, and a fluidized bed system having the solid bed height measuring apparatus. The solid bed height measuring apparatus includes a lower pressure probe mounted at an upper side as high as a first height from a gas distributor of a fluidized bed reactor to measure pressure of the mounted location, and a middle pressure probe mounted at an upper side as high as a second height from the lower probe to measure pressure of the mounted location. An upper pressure probe is mounted at the top of the fluidized bed reactor to measure the inside pressure of the fluidized bed reactor. First and second differential pressure gauges are used for measuring differential pressures.
Abstract:
A desulfurization system removes sulfur ingredients included synthetic gas generated from gasification of coal in a high temperature dry state. The system includes a desulfurization reactor, a desulfurization cyclone, and first and second regeneration reactors branched in the desulfurization cyclone. A first oxidizing agent is injected to a first oxidizing agent inlet of the first regeneration reactor, and a second oxidizing agent is injected to a second oxidizing agent inlet of the second regeneration reactor. A controller operates one of the first and second regeneration reactors in a regeneration mode, controlling the other to operate in a desulfurization mode.