Abstract:
In a method of resolving a contribution ratio to soil contamination by a plurality of polluters through a sequential extraction scheme and a stable isotope analysis scheme, Pb stable isotopes are eluted at 5 types of “cation exchange fraction”, “carbonate fraction”, “iron-oxide and manganese hydroxide-fraction”, “organic matters and sulfide fraction”, and “residual fraction” existing at other types and separated from each other in each step. The Pb stable isotopes obtained in each step are analyzed.The contribution ratio to soil contamination by the polluters is resolved through a predetermined resolving equation using the content of a Pb stable isotope in each step based on the content ratio of the Pb stable isotopes. The Pb stable isotopes are 206Pb and 207Pb.
Abstract:
In a method of resolving a contribution ratio to soil contamination by a plurality of polluters through a sequential extraction scheme and a stable isotope analysis scheme, Pb stable isotopes are eluted at 5 types of “cation exchange fraction”, “carbonate fraction”, “iron-oxide and manganese hydroxide-fraction”, “organic matters and sulfide fraction”, and “residual fraction” existing at other types and separated from each other in each step. The Pb stable isotopes obtained in each step are analyzed. The contribution ratio to soil contamination by the polluters is resolved through a predetermined resolving equation using the content of a Pb stable isotope in each step based on the content ratio of the Pb stable isotopes. The Pb stable isotopes are 206Pb and 207Pb.
Abstract:
Disclosed is a method of evaluating a final equilibrium pH of a contaminated soil on site by using a paste pH. The method includes measuring the paste pH by adding a solution to the contaminated soil, and evaluating the final equilibrium pH according to an initial pH by applying the paste pH to Final equilibrium pH = ( paste pH + 1 ) × exp ( - 1 initial pH ) - exp ( - 1 ( paste pH + 1 ) initital pH ) , Equation 1 in which the initial pH is a predetermined integer in a range of 1 to 10.
Abstract:
Provided is an apparatus for a soil box experiment making a shape of a variable landslide surface. The apparatus for the soil box experiment making the shape of the variable landslide surface includes a soil box for realizing a slope on which landslide occurs, the soil box being inclinedly disposed and having an opened upper portion to accommodate soil therein, a base member disposed under the soil box to support the soil box, and a shape changing unit for changing a shape of a bottom surface of the soil box.
Abstract:
Embodiments of the present invention relate to a method of treating a strong basic aluminum production waste. The method includes preparing an aluminum production waste; and mixing the aluminum production waste with gypsum.
Abstract:
Disclosed is a method of treating a strong basic aluminum production waste. The method includes preparing an aluminum production waste; and mixing the aluminum production waste with gypsum.