Abstract:
A vanadium-based hydrogen permeation alloy for a membrane, a method of manufacturing the same, and a method of using a membrane including the same are provided. The vanadium-based hydrogen permeation alloy for a membrane includes nickel (Ni) at more than 0 atm % and 5 atm % or less, iron (Fe) at 5 atm % to 15 atm %, yttrium (Y) at more than 0 atm % and 1 atm % or less, and a remainder of vanadium and impurities.
Abstract:
The present disclosure relates to a prelithiation solution and a method for preparing a prelithiated anode using the same. The prelithiation solution and the method for preparing a prelithiated anode using the same according to the present disclosure allow uniform intercalation of lithium ions throughout the anode chemically in a solution via a simple process of immersing the anode in a prelithiation solution having a sufficiently low redox potential as compared to an anode active material. A prelithiated anode prepared by this method has an ideal initial coulombic efficiency and a lithium secondary battery with a high energy density can be prepared based thereon. In addition, the prepared anode is advantageously applicable to large-scale production due to superior stability even in dry air.
Abstract:
A method of joining a high entropy alloy is provided. The method of joining a high entropy alloy includes the steps of: arranging specimens made of a high entropy alloy to be in contact with each other; and diffusion joining the specimens made of the high entropy alloy by simultaneously applying a compressive stress and a current to a joint of the specimens within a range in which the high entropy alloy does not melt.
Abstract:
Provided is a hydrogen storage alloy including a ternary alloy of titanium (Ti), iron (Fe), and vanadium (V), wherein V sites in the ternary alloy correspond to some of Ti sites in a binary TiFe alloy including Ti and Fe, and some of Fe sites in the binary TiFe alloy.
Abstract:
Provided is a method of preparing palladium hydride nanoparticles having a hcp crystal structure. According to an embodiment of the present invention, the method includes: (a) preparing a liquid cell containing a palladium precursor solution; (b) applying electron beams to the palladium precursor solution contained in the liquid cell; and (c) generating palladium hydride nanoparticles having the hcp crystal structure in the palladium precursor solution.
Abstract:
Provided is an apparatus for evaluating high-temperature creep behavior of metals, the apparatus including a chamber configured to fix a metal sample in an inner space sealed from an external environment, and including, at a lower portion, a metal tube stretchable in a length direction by a pressure of a gas, wherein the apparatus is configured in such a manner that a load received by the chamber in the length direction due to the pressure of the gas injected into the chamber is applied to the metal sample.