Abstract:
Disclosed is an electrode catalyst for a hydrocarbon-fueled solid oxide fuel cell. The electrode catalyst includes ceria supports and iridium-nickel alloy nanoparticles dispersed on the surfaces of the ceria supports. The electrode catalyst can be inhibited from carbon deposition, a general phenomenon in conventional hydrocarbon-fueled solid oxide fuel cells. Therefore, the catalytic activity of the electrode catalyst can be maintained even at high temperature for a long period of time. In addition, the electrode catalyst contains a minimum amount of a platinum group metal for inhibiting the occurrence of carbon deposition and has a maximized surface area. Therefore, the electrode catalyst exhibits improved catalytic activity and can be produced at greatly reduced cost while suppressing the occurrence of carbon deposition.