摘要:
Disclosed herein are a fuel cell manifold and a fuel cell stack including the same. The manifold may include a cover plate, an air guide plate configured to guide a flow of air in the manifold, a fuel guide plate configured to guide a flow of fuel in the manifold, and an auxiliary plate providing a passage for inflow of air and outflow of fuel.
摘要:
The present disclosure relates to a nanocatalyst for an anode of a solid oxide fuel cell and a method for preparing the same. More particularly, the present disclosure relates to a nanocatalyst for an anode of a solid oxide fuel cell obtained by forming a ceramic nanocatalyst including a noble metal dispersed therein in an atomic unit and contained in an ionic state having an oxidation number other than 0 through an in situ infiltration process in the internal pores of a porous electrode, and to application of the nanocatalyst to a solid oxide fuel cell having significantly higher electrochemical characteristics as compared to the solid oxide fuel cells including the conventional nickel-based anode and oxide anode, and particularly showing excellent characteristics at an intermediate or low temperature of 600° C. or less.
摘要:
Provided are a sulfide-based lithium-argyrodite ion superconductor containing multiple chalcogen elements and a method for preparing the same. More specifically, provided are a sulfide-based lithium-argyrodite ion superconductor containing multiple chalcogen elements and a method for preparing the same that are capable of significantly improving lithium ion conductivity by substituting a sulfur (S) element in a PS43- tetrahedron with a chalcogen element such as a selenium (Se) element, other than the sulfur (S) element, while maintaining an argyrodite-type crystal structure of a sulfide-based solid electrolyte represented by Li6PS5Cl.
摘要:
A metal/support catalyst for conversion of carbon dioxide to methane contains a metal including a transition metal and a support containing a perovskite-type oxide, on which the metal is supported. The metal/support catalyst for conversion of carbon dioxide to methane is capable of increasing the catalytic activity of the Sabatier reaction by promoting the formation of hydroxide ions and helping the production of formate, which is a reaction intermediate in the conversion of carbon dioxide to methane, without using a precious metal. In addition, it is capable of conducting the reaction stably for a long period of time.
摘要:
A metal-ceramic composite for a fuel cell anode is disclosed. In the metal-ceramic composite, the content of the metal is greatly reduced and the intervals between the metal particles are maintained constant, achieving improved activity and conductivity. The metal-ceramic composite includes a metal catalyst raw material and a mixed-conductive ceramic. The metal catalyst raw material is present in an amount such that the content of the metal catalyst nanoparticles in the metal-ceramic composite is significantly lower than in conventional metal-ceramic composites. The presence of a small amount of the metal catalyst nanoparticles in the metal-ceramic composite minimizes the occurrence of stress resulting from a change in the volume of the metal catalyst and provides a solution to the problem of defects, achieving improved life characteristics. Also disclosed is a method for preparing the metal-ceramic composite.
摘要:
Provided are a solid oxide cell (SOC) system producing a synthetic gas by using a waste gas discharged from a power plant, or the like, and a method for controlling the same. The SOC system includes i) a first power plant configured to provide a waste gas and first electrical energy, ii) a second power plant configured to provide second electrical energy using an energy source different from that of the first power plant, and iii) a solid oxide cell (SOC) connected to the first power plant and the second power plant, configured to receive the waste gas and the second electrical energy to manufacture carbon monoxide and hydrogen, and providing the carbon monoxide and the hydrogen to the first power plant.
摘要:
Disclosed is a metal separator for a solid oxide regenerative fuel cell coated with a conductive spinel oxide film. In the conductive spinel oxide film, yttrium is added to a manganese-cobalt spinel oxide to suppress growth of an insulating oxide film on the surface of the metal separator and volatilization of metal. In the conductive oxide film coated on the metal separator, yttrium is segregated at the grain boundaries of the spinel so that migration of oxygen through the grain boundaries can be suppressed. Therefore, the surface of the metal separator can be protected from exposure to the atmosphere and water vapor when the solid oxide regenerative fuel cell is operated at high temperature. In addition, poisoning of electrodes by metal volatilization from the surface of the metal separator and growth of an insulating oxide film on the surface of the metal separator can be prevented. Therefore, the stability of the solid oxide regenerative fuel cell stack can be markedly improved.
摘要:
Disclosed are a separator for fuel cells capable of minimizing the volume of a system and the use of sealants, and a stack for fuel cells, more particularly, a stack for solid oxide fuel cells, including the same. Specifically, by adding a metal sheet having a specific shape, position and size to the separator, the stress applied to the sealant can be uniformized, and thus the oxidizing agent and fuel can be separated and electrically isolated using only a piece of sealant. Therefore, the stack for fuel cells is characterized in that there is no variation in temperature, reactant concentration, power, or the like between respective unit cells, so delamination and microcracks do not occur, the volume is minimized, and the power density per unit volume is very high.
摘要:
Disclosed is an anode-free all-solid-state battery having improved charge/discharge cycle stability. Specifically, the anode-free all-solid-state battery includes a cathode layer containing a cathode active material, an anode current collector layer, and a solid electrolyte layer interposed between the cathode layer and the anode current collector layer, wherein the anode current collector layer has a surface roughness (Rq) of 100 nm to 1,000 nm.
摘要:
This application relates to a separator for a fuel cell and a fuel cell stack with improved durability, which contains the same, particularly to a solid oxide fuel cell stack. Specifically, this application allows an oxidizer and a fuel to flow in a counter-flow manner and a cross-flow manner in the fuel cell stack by forming an outlet manifold and an inlet manifold to have a specific shape, location and size in the separator. As a result, interlayer peeling, microcracking, etc. are prevented because no variation in temperature, reactant concentration, power, etc. occurs between each unit cell and the power density per unit volume is significantly improved because the volume is minimized.