Abstract:
An image forming apparatus includes a housing in which a developing device is disposed, a cover member attached to the housing, a developer storage container to be detachably attached to the developing device, and a sensor unit. The developer storage container includes a container body having a storage space for storing a developer and a developer discharge port, and a moving wall configured to move in the container body. The sensor unit is arranged at a detection position where a detection sensor faces a specific area located above the developer discharge port on an outer peripheral surface of the container body when the cover member is in a closing posture, and arranged at a detection disable position where the detection sensor is distant from the specified area when the cover member is in an opening posture.
Abstract:
A developer container includes a container main body having an internal space and a developer discharge port; a movable wall moving in the internal space toward the developer discharge port; a detection surface which is a part of an inner peripheral surface that divides a storage space of a developer in the container main body and which becomes a detection region of a first detection sensor which detects the developer in the storage space; and a rotating body arranged in the storage space and capable of rotating around a rotary shaft along the first direction. The rotating body is mounted with a cleaning member which cleans the detection surface, a stirring member which stirs a developer in the storage space, and a detection target member to be a detection target of a second detection sensor which detects presence of the container main body.
Abstract:
A developer container includes a container body and a movable wall. The container body includes an inner surface defining a cylindrical internal space extending in a first direction. The container body is formed with a developer discharge port communicating with the internal space. The movable wall includes a conveying surface defining a storage space for containing the developer in cooperation, and moves in a moving direction parallel with the first direction from an initial position at one end side to a final position at the other end side of the internal space while conveying the developer in the storage space to the developer discharge port. The movable wall that is at the final position allows the conveying surface to extend so obliquely that an upper edge of the conveying surface lies downstream of a lower edge of the conveying surface in the moving direction.
Abstract:
A developer container includes a container body and a movable wall. The container body includes an inner surface defining a cylindrical internal space extending in a first direction. The container body is formed with a developer discharge port communicating with the internal space. The movable wall includes a conveying surface defining a storage space for containing the developer in cooperation, and moves in a moving direction parallel with the first direction from an initial position at one end side to a final position at the other end side of the internal space while conveying the developer in the storage space to the developer discharge port. The movable wall that is at the final position allows the conveying surface to extend so obliquely that an upper edge of the conveying surface lies downstream of a lower edge of the conveying surface in the moving direction.
Abstract:
The control unit controls supply of toner from the toner container to the developing device. The image forming apparatus performs durability correction for correcting image forming conditions in accordance with a cumulative driving time from the start of use of the developing device, a cumulative number of printed sheets, and the like. The control unit can execute a normal supply of toner from the toner container to the developing device based on the detection result of the toner amount detection sensor, and a toner installation mode in which more toner is supplied from the toner container to the developing device than the normal supply. When toner is not detected in the developing device, a durability correction value is reset and the toner installation mode is executed. When toner is detected in the developing device, the control unit executes the toner installation mode without resetting the durability correction value.
Abstract:
An image forming apparatus includes a developer container having a movable wall therein, a determination unit, a movable wall driving unit, and a movable wall driving controller. The determination unit outputs first determination information when a number of outputs of a signal indicating that a detection sensor has detected a developer is less than a threshold value, and outputs second determination information when the number of outputs thereof is equal to or greater than the threshold value. The movable wall driving unit includes a first driving motor for moving the movable wall and a first driving circuit for controlling driving thereof. The movable wall driving controller includes a signal controller. The signal controller transmits a drive permission signal for the first driving motor when the first determination information is output, and transmits a drive non-permission signal for the first driving motor when the second determination information is output.
Abstract:
An image forming apparatus has an image carrying body, a first electrically conductive member, a bias application device, and a controller. The first electrically conductive member makes contact with the photosensitive layer of the image carrying body The bias application device applies a bias containing an AC bias to the first electrically conductive member. The controller controls the bias application device. The image forming apparatus can execute, while no image formation is being performed, a temperature raising mode in which, with the first electrically conductive member in contact with the image carrying body outside the image formation region, an AC bias having a peak-to-peak value twice as high as the discharge start voltage between the first electrically conductive member and the image carrying body is applied to the first electrically conductive member to raise the temperature of the surface of the image carrying body.
Abstract:
An image forming apparatus includes an image bearing member, a first conductive member, a bias application device, and a control portion, and performs image formation on a surface of the image bearing member while making the image bearing member rotate. The image forming apparatus is capable of executing a heating-up mode in which, at the time of non-image formation, in a state where the image bearing member is made to rotate at a velocity lower than that used at the time of image formation, an alternating current bias having a frequency higher than that used at the time of image formation and a peak-to-peak value twice or more as large as a discharge start voltage between the first conductive member and the image bearing member is applied to the first conductive member to cause a surface of the image bearing member to be heated up.
Abstract:
An image forming apparatus includes an image carrier, a charge roller, a cleaning brush and a distance changing mechanism. The charge roller includes a surface having protrusions and depressions and to electrically charge the image carrier. The cleaning brush includes a brush part cleaning the surface of the charge roller and a main body part supporting the brush part. The brush part includes a top end part and a belly part being nearer to the main body part than the top end part. The distance changing mechanism changes a distance between the charge roller and main body part so that, by adjusting the distance to a first distance, the top end part contacts with the depression and, by adjusting the distance to a second distance shorter than the first distance, the belly part contacts with the protrusion.
Abstract:
In a developer container, a rotating shaft is rotatably supported by a casing and is rotationally driven. A flexible member has a leading edge portion which is connected to the rotating shaft and turns through a region extending over a supply port on an inner lower surface of the casing when the flexible member is rotated in association with the rotating shaft. A rotating plate is formed to project in a handguard-shape from a portion of the rotating shaft adjacent to the flexible member, has an outer edge portion along an edge of the supply port, and rotates in association with the rotating shaft.