摘要:
A method for multi-objective fault accommodation using predictive modeling is disclosed. The method includes using a simulated machine that simulates a faulted actual machine, and using a simulated controller that simulates an actual controller. A multi-objective optimization process is performed, based on specified control settings for the simulated controller and specified operational scenarios for the simulated machine controlled by the simulated controller, to generate a Pareto frontier-based solution space relating performance of the simulated machine to settings of the simulated controller, including adjustment to the operational scenarios to represent a fault condition of the simulated machine. Control settings of the actual controller are adjusted, represented by the simulated controller, for controlling the actual machine, represented by the simulated machine, in response to a fault condition of the actual machine, based on the Pareto frontier-based solution space, to maximize desirable operational conditions and minimize undesirable operational conditions while operating the actual machine in a region of the solution space defined by the Pareto frontier.
摘要:
A method for multi-objective fault accommodation using predictive modeling is disclosed. The method includes using a simulated machine that simulates a faulted actual machine, and using a simulated controller that simulates an actual controller. A multi-objective optimization process is performed, based on specified control settings for the simulated controller and specified operational scenarios for the simulated machine controlled by the simulated controller, to generate a Pareto frontier-based solution space relating performance of the simulated machine to settings of the simulated controller, including adjustment to the operational scenarios to represent a fault condition of the simulated machine. Control settings of the actual controller are adjusted, represented by the simulated controller, for controlling the actual machine, represented by the simulated machine, in response to a fault condition of the actual machine, based on the Pareto frontier-based solution space, to maximize desirable operational conditions and minimize undesirable operational conditions while operating the actual machine in a region of the solution space defined by the Pareto frontier.
摘要:
A method for multi-objective deterioration accommodation using predictive modeling is disclosed. The method uses a simulated machine that simulates a deteriorated actual machine, and a simulated controller that simulates an actual controller. A multi-objective process is performed, based on specified control settings for the simulated controller and specified operational scenarios for the simulated machine controlled by the simulated controller, to generate a Pareto frontier-based solution space relating performance of the simulated machine to settings of the simulated controller, including adjustment to the operational scenarios to represent a deteriorated condition of the simulated machine. Control settings of the actual controller are adjusted, represented by the simulated controller, for controlling the actual machine, represented by the simulated machine, in response to a deteriorated condition of the actual machine, based on the Pareto frontier-based solution space, to maximize desirable operational conditions and minimize undesirable operational conditions while operating the actual machine in a region of the solution space defined by the Pareto frontier.
摘要:
A method to reduce uncertainty bounds of predicting a remaining life of a probe using a set of diverse models is disclosed. The method includes generating an estimated remaining life output by each model of the set of diverse models, aggregating each of the respective estimated remaining life outputs via a fusion model, and in response to the aggregating, predicting the remaining life, the predicting having reduced uncertainty bounds based on the aggregating. The method further includes generating a signal corresponding to the predicted remaining life of the probe.
摘要:
The present invention provides methods and tools to aggregate information stemming from a plurality of different classification tools and supportive evidential information to arrive at a unified classification estimate. The information fusion system according to the present invention has a plurality of sensors associated with the system, where each sensor is related to at least one class of the system and is data-related to the at least one class. A plurality of classification tools are each designed to receive selected and pre-processed outputs from the sensors and to generate classification outputs representing a state of at least one class of the system. An information fusion tool is configured to receive the outputs of the classification tools as well as evidential information as inputs, and has an hierarchical architecture which manipulates the inputs to generate an output of aggregated fused information for a particular class of the system.
摘要:
A method to predict equipment life is disclosed. The method includes making available a set of input parameters, and defining a model of a health of the equipment as a function of the set of input parameters. The method continues with receiving at least one signal representative of a respective one of an actual sensor output relating to an actual operation attribute margin of the equipment, predicting a remaining useful equipment life based upon a sequence of outputs of the model of the health of the equipment, and generating a signal corresponding to the remaining useful equipment life.
摘要:
A method to estimate damage propagation is disclosed. The method includes making available a set of input parameters to a computational model, executing the computational model with defined changes within a range of an input parameter of the set of input parameters to define a range of at least one modeled output, receiving at least one signal responsive to and representative of a respective one of an actual sensor output, and estimating damage propagation based upon a correlation of the received signal to the modeled output.
摘要:
A method to reduce uncertainty bounds of predicting a remaining life of a probe using a set of diverse models is disclosed. The method includes generating an estimated remaining life output by each model of the set of diverse models, aggregating each of the respective estimated remaining life outputs via a fusion model, and in response to the aggregating, predicting the remaining life, the predicting having reduced uncertainty bounds based on the aggregating. The method further includes generating a signal corresponding to the predicted remaining life of the probe.
摘要:
A method to predict remaining life of a target is disclosed. The method includes receiving information regarding a behavior of the target, and identifying from a database at least one piece of equipment having similarities to the target. The method further includes retrieving from the database data prior to an end of the equipment useful life, the data having a relationship to the behavior, evaluating a similarity of the relationship, predicting the remaining life of the target based upon the similarity, and generating a signal corresponding to the predicted remaining equipment life.
摘要:
This invention provides a system and method for generating alerts through multi-variate assessment. A normalizer normalizes data obtained from a process. A classifier classifies the correlated data in a multi-dimensional space defined for the variables in the process. The normalized data are classified into a normal cluster indicative of normal operating conditions and at least one alert cluster each indicative of alert conditions. An alert verifier verifies correlated data classified as an alert condition. In another embodiment of this invention, a tracker is used for addressing drifting data sets that arise in the process over time which allows the adaptation of classifiers to the shifted state. In a third embodiment, the multi-variate generator is used in parallel with a trend performance analysis tool to validate alerts generated therefrom.