摘要:
The invention is directed to an arrangement for providing a reproducible target flow for the energy beam-induced generation of short-wavelength radiation. It is the object of the invention to find a novel possibility for providing a reproducibly supplied target flow for the generation of a plasma that emits short-wavelength radiation which ensures a high directional stability of the target flow over a large number of individual plasma generation process for any target materials under given process conditions. According to the invention, this object is met in that a nozzle protection device is provided in the interaction chamber between the target nozzle and the interaction point for the generation of the plasma, and the nozzle protection device contains a gas pressure chamber which has an aperture along the target path for unobstructed passage of the target flow and which is filled with a buffer gas that is maintained at a pressure of some 10 mbar.
摘要:
The invention is directed to an arrangement for providing a reproducible target flow for the energy beam-induced generation of short-wavelength radiation. It is the object of the invention to find a novel possibility for providing a reproducibly supplied target flow for the generation of a plasma that emits short-wavelength radiation which ensures a high directional stability of the target flow over a large number of individual plasma generation process for any target materials under given process conditions. According to the invention, this object is met in that a nozzle protection device is provided in the interaction chamber between the target nozzle and the interaction point for the generation of the plasma, and the nozzle protection device contains a gas pressure chamber which has an aperture along the target path for unobstructed passage of the target flow and which is filled with a buffer gas that is maintained at a pressure of some 10 mbar.
摘要:
The invention is directed to an arrangement for generating extreme ultraviolet radiation from a plasma generated by an energy beam with high conversion efficiency, particularly for application in radiation sources for EUV lithography. It is the object of the invention to find a novel possibility for generating EUV radiation by means of a plasma induced by an energy beam that permits a more efficient conversion of the energy radiation into EUV radiation in the wavelength region of 13.5 nm and ensures a long lifetime of the optical components and the injection device. According to the invention, this object is met by using a mixture of particles with a carrier gas and the target feed device has a gas liquefaction chamber, wherein the target material is supplied to the injection unit as a mixture of solid particles in liquefied carrier gas, and a droplet generator is provided for generating a defined droplet size and series of droplets, wherein means which are controllable in a frequency-dependent manner and which are triggered by the pulse frequency of the energy beam are connected to the injection unit for the series of droplets.
摘要:
The invention is directed to an arrangement for generating extreme ultraviolet radiation from a plasma generated by an energy beam with high conversion efficiency, particularly for application in radiation sources for EUV lithography. It is the object of the invention to find a novel possibility for generating EUV radiation by means of a plasma induced by an energy beam that permits a more efficient conversion of the energy radiation into EUV radiation in the wavelength region of 13.5 nm and ensures a long lifetime of the optical components and the injection device. According to the invention, this object is met by using a mixture of particles with a carrier gas and the target feed device has a gas liquefaction chamber, wherein the target material is supplied to the injection unit as a mixture of solid particles in liquefied carrier gas, and a droplet generator is provided for generating a defined droplet size and series of droplets, wherein means which are controllable in a frequency-dependent manner and which are triggered by the pulse frequency of the energy beam are connected to the injection unit for the series of droplets.
摘要:
The invention is directed to an arrangement for generating intensive radiation based on a plasma, particularly short-wavelength radiation from soft x-ray radiation to extreme ultraviolet (EUV) radiation. The object of the invention is to find a novel possibility for generating radiation generated from plasma in which the individual pulse energy coupled into the plasma and, therefore, the usable radiation output are appreciably increased while retaining the advantages of mass-limited targets. According to the invention, this object is met in that the target generator has a multiple-channel nozzle with a plurality of separate orifices, wherein the orifices generate a plurality of target jets, the excitation radiation for generating plasma being directed simultaneously portion by portion to the target jets.
摘要:
The invention is directed to an apparatus for generating soft x-radiation, particularly EUV radiation, by laser-induced plasma. The object of the invention, to find a novel possibility for generating EUV radiation by means of a laser-induced plasma by which a temporally stable radiation emission in the desired wavelength region is ensured when interacting with the target without active regulation of the laser beam, is met according to the invention in that at least one laser is directed to the target, wherein the laser has at least one defined plane with a highly stable spatial distribution of the power density of the laser, and this defined plane is imaged on the target by an optical imaging system so as to be reduced so that the optical image of the defined plane is active for the plasma generation instead of the laser focus. The invention is applied in exposure machines for semiconductor lithography for spatially stable generation of radiation.
摘要:
The invention is directed to a method and an arrangement for the plasma-based generation of intensive short-wavelength radiation, particularly EUV radiation. The object of the invention, to find a novel possibility for plasma-based generation of intensive soft x-radiation, particularly EUV radiation, which permits efficient energy conversion in the desired spectral band with high repetition frequency (several kHz) of the plasma excitation, minimized emission of debris and low erosion of the nozzle of the target generator, is met according to the invention in that an additional energy beam is directed on the target flow spatially in advance of its interaction with the high-energy beam, the target flow being acted upon by this additional energy beam with substantially weaker energy pulses compared to the high-energy beam in order to divide the target flow into a first portion and at least one second portion, wherein the target flow is excited at an interaction point within the second portion by the high-energy beam for generating a hot, radiating plasma, and the second portion is decoupled from the first portion and therefore from the target generator in such a way that a hydrodynamic disturbance generated in the second portion by the pulse of the high-energy beam is transmitted into the first portion only negligibly.
摘要:
In a radiation source for the generation of short-wavelength radiation, it is the object of the invention to effectively increase the protection of the collimator optics by a buffer gas without substantially reducing the radiation transmission. A vacuum chamber which encloses a radiation-emitting plasma and is outfitted with at least one feed line and one outlet line for a buffer gas in order to ensure protection against debris for at least one optical element which directs the radiation to a radiation outlet opening in the vacuum chamber has chamber areas with particle deceleration of varying magnitude by the buffer gas. The particle deceleration is greater at least in a first chamber area in which the optical element is arranged than in any other chamber area.
摘要:
The invention is directed to a method and an arrangement for plasma-based generation of soft x-radiation, particularly for the generation of extreme ultraviolet (EUV) radiation. The object of the invention, to find a novel possibility for providing a target for a plasma-based radiation source which permits a reduction in the heating and erosion of the nozzle and therefore permits an improved temperature control at the injection device, is met according to the invention in that a closure device is arranged between the target nozzle and the interaction region which interrupts an opening for temporarily passing the target flow by mechanically moving elements, wherein at least a portion of the target flow that is provided in a reproducible manner is separated in order to interact with the energy beam only during those time intervals in which an optical transmission from the interaction region to the target nozzle is prevented by the closure device.
摘要:
The invention is directed to an arrangement for generating a pulsed laser beam with high average output, in particular for generating a hot plasma which emits extreme ultraviolet (EUV) radiation. It is the object of the invention to find a novel possibility for generating a laser beam with a high repetition rate and average output which allows the repetition frequency and, therefore, the output of the laser system to be increased by connecting together a plurality of individual lasers having limited repetition rate without degradation of the beam quality on the target compared to that of an individual laser. This object is met, according to the invention, in that an oriented mirror surface is associated with each individual laser in such a way that a beam bundle which is emitted by each individual laser so as to be offset with respect to time and which is reflected at the mirror surface is coupled into a common beam path, and laser pulses in the common beam path are directed to a target one after the other in a regular, defined pulse sequence, and, with a continuously dynamic mirror movement for coupling the laser pulses into the common beam path, optical means are provided in the common beam path for compensating the directional change caused by the mirror movement.