摘要:
A pacemaker lead includes a body and an insulation layer. The body includes at least one carbon nanotube yarn. The at least one carbon nanotube yarn includes a plurality of carbon nanotubes. The carbon nanotubes are interconnected along an axis of the body by van der Waals force. The insulation layer covers an outer surface of the body.
摘要:
A pacemaker includes a pulse generator, a conduction line, and a pacemaker electrode. The pacemaker electrode includes a body and an insulation layer. The body includes at least one carbon nanotube yarn. The carbon nanotube yarn includes a number of carbon nanotubes. The carbon nanotubes are interconnected along one axis of the body by van der Waals force. The insulation layer covers an outer surface of the body.
摘要:
A method for manufacturing a carbon nanotube film, comprises providing a carbon nanotube array and a drawing tool, positioning the drawing tool close to the carbon nanotube array and selecting some carbon nanotubes of the carbon nanotube array, and drawing the selected carbon nanotubes away from the carbon nanotube array along a drawing direction at a drawing angle, thereby forming the carbon nanotube film. The drawing angle is an angle of inclination between the drawing direction and the growth direction. The drawing angle is less than or equal to 80 degrees.
摘要:
A carbon nanotube film includes a plurality of successively oriented carbon nanotubes joined end-to-end by Van der Waals attractive force therebetween. The carbon nanotubes define a plurality of first areas and a plurality of second areas. The first areas and the second areas have different densities of carbon nanotubes. A method for manufacturing the same is also provided. A light source using the carbon nanotube film is also provided.
摘要:
A method for making a carbon nanotube structure is introduced. The method includes the following steps. A carbon nanotube precursor including a number of carbon nanotubes is provided. The carbon nanotube precursor is placed in a chamber with low oxygen environment. The carbon nanotube precursor is heated in the chamber.
摘要:
A method for making a composite carbon nanotube structure includes the following steps. An organic solvent, a polymer, and a carbon nanotube structure are provided. The polymer is dissolved in the organic solvent to obtain a polymer solution. The carbon nanotube film structure is soaked with the polymer solution. A contact angle between the organic solvent and a carbon nanotube is less than 90 degrees.
摘要:
A surface-enhanced Raman scattering substrate includes a carbon nanotube film structure and a plurality of metallic particles disposed on the carbon nanotube film structure. The carbon nanotube film structure includes a number of carbon nanotubes joined by van der Waals attractive force therebetween. The carbon nanotube film structure is a free-standing structure.
摘要:
The present disclosure relates to a method for making a transparent carbon nanotube composite film. The method includes: (a) providing a transparent carbon nanotube film structure; (b) fixing the transparent carbon nanotube film structure on a supporting; (c) immersing the transparent carbon nanotube film structure with the supporting into a transparent polymer solution; and (d) removing the transparent carbon nanotube film structure with the supporting from the transparent polymer solution, thereby forming the transparent carbon nanotube composite film. A light transmittance of the transparent carbon nanotube composite film structure is higher than a light transmittance of the transparent carbon nanotube film structure.
摘要:
An optical fiber probe includes an optical fiber, a carbon nanotube film structure, and a number of metallic particles. The optical fiber includes a detecting end. The carbon nanotube film structure is located on a surface of the detecting end. The carbon nanotube film structure includes a number of carbon nanotubes joined by van der Waals attractive force therebetween. The metallic particles are located on outer surfaces of the carbon nanotubes.
摘要:
The present invention relates to a method for making a twisted carbon nanotube wire. Two opposite ends of the at least one carbon nanotube film is clamped by two clamps. The two clamps is pulled along two reversed directions to stretch the at least one carbon nanotube film. The at least one carbon nanotube film is twisted by rotating the two clamps while the at least one carbon nanotube film is in a straightening state.