摘要:
Provided is a method and apparatus for controlling congestion of a node in an ad-hoc network comprising: classifying a channel state into a busy channel state and an idle channel state and then monitoring the channel state; performing contention for acquiring a channel with neighboring nodes when data to be transmitted is present during the monitoring of the channel state; calculating an available bandwidth on the basis of the channel state when wins the contention; and determining the amount of data to be transmitted on the basis of the available bandwidth. The nodes in the ah-hoc network monitor their own wireless channel state so as to obtain channel contention information, calculate an available bandwidth from the channel contention information, and control a transmission amount on the basis of the available bandwidth. Accordingly, the nodes can avoid excessive traffic which exceeds channel capacity. Channel contention, which is the most immediate and important cause of a decrease in network performance, can be loosened.
摘要:
Provided is a method and apparatus for controlling congestion of a node in an ad-hoc network comprising: classifying a channel state into a busy channel state and an idle channel state and then monitoring the channel state; performing contention for acquiring a channel with neighboring nodes when data to be transmitted is present during the monitoring of the channel state; calculating an available bandwidth on the basis of the channel state when wins the contention; and determining the amount of data to be transmitted on the basis of the available bandwidth. The nodes in the ah-hoc network monitor their own wireless channel state so as to obtain channel contention information, calculate an available bandwidth from the channel contention information, and control a transmission amount on the basis of the available bandwidth. Accordingly, the nodes can avoid excessive traffic which exceeds channel capacity. Channel contention, which is the most immediate and important cause of a decrease in network performance, can be loosened.
摘要:
Provided is a resource allocation method performed in a wireless network formed of a plurality of nodes, the resource allocation method including the operations of forming clusters and electing cluster heads respectively for the clusters; determining whether a node from among the plurality of nodes forming the wireless network is an edge node; if the node is not the edge node according to a result of the determining, collecting link information related to other nodes in a cluster that comprises the node, and delivering the link information to a cluster head of the cluster; and if the node is the edge node according to a result of the determining, otherwise, obtaining link information and scheduling information from an edge node of another cluster within a communication range with the cluster comprising the edge node, and delivering the link information and scheduling information to the cluster head. The resource allocation method decentralizes a load of calculations to several nodes, wherein the load may be centralized to one node in a large ad-hoc network, so that an energy efficiency of the node may be increased, and since the several nodes sequentially perform simple calculation, a total of the resource allocation time may be reduced.
摘要:
There is provided a mesh routing method in beacon-enabled wireless AD-HOC networks that includes: broadcasting, by nodes constituting a wireless AD-HOC network, a beacon message loading neighbor node information on a beacon payload; managing, by a node receiving the broadcasted beacon message, its own neighbor node table by extracting the neighbor node information loaded on the beacon payload; and performing, by a source node attempting to transmit data or commands, mesh routing on the basis of its own neighbor node table.
摘要:
A super frame structure supporting a mesh network, and a beacon scheduling method. The super frame structure and the beacon scheduling method may support a mesh topology in a beacon enabled mode, may have an algorithm that is simple and easily realized via beacon scheduling using a distribution method, and may easily adapt to changes in a network environment.
摘要:
A medium access control (MAC) technique of a multihop sensor network. In the multihop sensor network, the MAC technique may contribute to significantly reducing transmission delay, and allow real-time services to be provided to all nodes by extending a guaranteed time slot (GTS) restricted to one hop in a personal area network (PAN) coordinator (PNC) to all nodes. Furthermore, the MAC technique may allow the number of available GTSs to be significantly increased, by using all 16 frequency band channels instead of using only a single frequency band and setting a multi-superframe.
摘要:
There is provided a mesh routing method in beacon-enabled wireless AD-HOC networks that includes: broadcasting, by nodes constituting a wireless AD-HOC network, a beacon message loading neighbor node information on a beacon payload; managing, by a node receiving the broadcasted beacon message, its own neighbor node table by extracting the neighbor node information loaded on the beacon payload; and performing, by a source node attempting to transmit data or commands, mesh routing on the basis of its own neighbor node table.
摘要:
A wireless network system using a cyclic frame including a beacon period (BP), a mesh contention access period (MCAP), and a slot period (SP). The cyclic frame has a frame structure that shares a channel hopping sequence of a node, thereby sharing the channel hopping sequence that operates as an existing mesh node without generating an additional channel hopping sequence, and supporting mesh and star type topologies together in order to efficiently operate a network.
摘要:
A medium access control (MAC) technique of a multihop sensor network. In the multihop sensor network, the MAC technique may contribute to significantly reducing transmission delay, and allow real-time services to be provided to all nodes by extending a guaranteed time slot (GTS) restricted to one hop in a personal area network (PAN) coordinator (PNC) to all nodes. Furthermore, the MAC technique may allow the number of available GTSs to be significantly increased, by using all 16 frequency band channels instead of using only a single frequency band and setting a multi-superframe.
摘要:
A distributed channel hopping communication method in a low power wireless ad-hoc network. A beacon transmission and reception scheduling method using a distributed channel hopping method in a wireless ad-hoc network, the method includes: transmitting beacons using channel hopping, before establishing the wireless ad-hoc network including a plurality of nodes having a BP including at least one time slot, and receiving beacons of a plurality of neighboring nodes of each of the plurality of nodes; collecting information about the wireless ad-hoc network and information about the plurality of neighboring nodes from the received beacons; scheduling the receiving of the beacons that are transmitted from the plurality of neighboring nodes in the BP, using TDMA in each of the at least one time slot based on the information about the plurality of neighboring nodes; and scheduling transmitting of a beacon in each of the at least one time slot.