摘要:
A field effect transistor structure that uses thin semiconductor on insulator channel to control the electrostatic integrity of the device. Embedded stressors are epitaxially grown in the source/drain area from a template in the silicon substrate through an opening made in the buried oxide in the source/drain region. In addition, a dielectric layer is formed between the embedded stressor and the semiconductor region under the buried oxide layer, which is located directly beneath the channel to suppress junction capacitance and leakage.
摘要:
A transistor is provided that includes a buried oxide layer above a substrate. A silicon layer is above the buried oxide layer. A gate stack is on the silicon layer, the gate stack including a high-k oxide layer on the silicon layer and a metal gate on the high-k oxide layer. A nitride liner is adjacent to the gate stack. An oxide liner is adjacent to the nitride liner. A set of faceted raised source/drain regions having a part including a portion of the silicon layer. The set of faceted raised source/drain regions also include a first faceted side portion and a second faceted side portion.
摘要:
MOSFETs and methods for making MOSFETs with a recessed channel and abrupt junctions are disclosed. The method includes creating source and drain extensions while a dummy gate is in place. The source/drain extensions create a diffuse junction with the silicon substrate. The method continues by removing the dummy gate and etching a recess in the silicon substrate. The recess intersects at least a portion of the source and drain junction. Then a channel is formed by growing a silicon film to at least partially fill the recess. The channel has sharp junctions with the source and drains, while the unetched silicon remaining below the channel has diffuse junctions with the source and drain. Thus, a MOSFET with two junction regions, sharp and diffuse, in the same transistor can be created.
摘要:
A back-gated field effect transistor (FET) includes a substrate, the substrate comprising top semiconductor layer on top of a buried dielectric layer on top of a bottom semiconductor layer; a front gate located on the top semiconductor layer; a channel region located in the top semiconductor layer under the front gate; a source region located in the top semiconductor layer on a side of the channel region, and a drain region located in the top semiconductor layer on the side of the channel region opposite the source regions; and a back gate located in the bottom semiconductor layer, the back gate configured such that the back gate abuts the buried dielectric layer underneath the channel region, and is separated from the buried dielectric layer by a separation distance underneath the source region and the drain region.
摘要:
An SOI substrate, a semiconductor device, and a method of backgate work function tuning. The substrate and the device have a plurality of metal backgate regions wherein at least two regions have different work functions. The method includes forming a mask on a substrate and implanting a metal backgate interposed between a buried oxide and bulk regions of the substrate thereby producing at least two metal backgate regions having different doses of impurity and different work functions. The work function regions can be aligned such that each transistor has different threshold voltage. When a top gate electrode serves as the mask, a metal backgate with a first work function under the channel region and a second work function under the source/drain regions is formed. The implant can be tilted to shift the work function regions relative to the mask.
摘要:
A gate stack is formed on a silicon layer that is above a buried oxide layer. The gate stack comprises a high-k oxide layer on the silicon layer and a metal gate on the high-k oxide layer. A first nitride layer is formed on the silicon layer and the gate stack. An oxide layer is formed on the first nitride layer. A second nitride layer is formed on the oxide layer. The first nitride layer and the oxide layer are etched so as to form a nitride liner and an oxide liner adjacent to the gate stack. The second nitride layer is etched so as to form a first nitride spacer adjacent to the oxide liner. A faceted raised source/drain region is epitaxially formed adjacent to the nitride liner, the oxide liner, and first nitride spacer. Ions are implanted into the faceted raised source/drain region using the first nitride spacer.
摘要:
An SOI substrate, a semiconductor device, and a method of backgate work function tuning. The substrate and the device have a plurality of metal backgate regions wherein at least two regions have different work functions. The method includes forming a mask on a substrate and implanting a metal backgate interposed between a buried oxide and bulk regions of the substrate thereby producing at least two metal backgate regions having different doses of impurity and different work functions. The work function regions can be aligned such that each transistor has different threshold voltage. When a top gate electrode serves as the mask, a metal backgate with a first work function under the channel region and a second work function under the source/drain regions is formed. The implant can be tilted to shift the work function regions relative to the mask.
摘要:
A back-gated field effect transistor (FET) includes a substrate, the substrate comprising top semiconductor layer on top of a buried dielectric layer on top of a bottom semiconductor layer; a front gate located on the top semiconductor layer; a channel region located in the top semiconductor layer under the front gate; a source region located in the top semiconductor layer on a side of the channel region, and a drain region located in the top semiconductor layer on the side of the channel region opposite the source regions; and a back gate located in the bottom semiconductor layer, the back gate configured such that the back gate abuts the buried dielectric layer underneath the channel region, and is separated from the buried dielectric layer by a separation distance underneath the source region and the drain region.
摘要:
A transistor is provided that includes a buried oxide layer above a substrate. A silicon layer is above the buried oxide layer. A gate stack is on the silicon layer, the gate stack including a high-k oxide layer on the silicon layer and a metal gate on the high-k oxide layer. A nitride liner is adjacent to the gate stack. An oxide liner is adjacent to the nitride liner. A set of faceted raised source/drain regions having a part including a portion of the silicon layer. The set of faceted raised source/drain regions also include a first faceted side portion and a second faceted side portion.
摘要:
MOSFETs and methods for making MOSFETs with a recessed channel and abrupt junctions are disclosed. The method includes creating source and drain extensions while a dummy gate is in place. The source/drain extensions create a diffuse junction with the silicon substrate. The method continues by removing the dummy gate and etching a recess in the silicon substrate. The recess intersects at least a portion of the source and drain junction. Then a channel is formed by growing a silicon film to at least partially fill the recess. The channel has sharp junctions with the source and drains, while the unetched silicon remaining below the channel has diffuse junctions with the source and drain. Thus, a MOSFET with two junction regions, sharp and diffuse, in the same transistor can be created.