摘要:
An exemplary monitoring system 1) receives a user input command to begin monitoring evoked responses that occur in response to acoustic stimulation during an insertion procedure in which a lead that is communicatively coupled to a cochlear implant is inserted into a cochlea of a patient, the lead having an array of intracochlear electrodes and an extracochlear electrode, the extracochlear electrode physically and communicatively coupled to a probe that is also communicatively coupled to the monitoring system, 2) directs, in response to the user input command, the cochlear implant to short an intracochlear electrode with the extracochlear electrode, 3) presents the acoustic stimulation to the patient, and 4) records the evoked responses that occur in response to the acoustic stimulation by using the intracochlear electrode to detect signals representative of the evoked responses and receiving the detected signals by way of the extracochlear electrode and the probe.
摘要:
An exemplary monitoring system 1) receives a user input command to begin monitoring evoked responses that occur in response to acoustic stimulation during an insertion procedure in which a lead that is communicatively coupled to a cochlear implant is inserted into a cochlea of a patient, the lead having an array of intracochlear electrodes and an extracochlear electrode, the extracochlear electrode physically and communicatively coupled to a probe that is also communicatively coupled to the monitoring system, 2) directs, in response to the user input command, the cochlear implant to short an intracochlear electrode with the extracochlear electrode, 3) presents the acoustic stimulation to the patient, and 4) records the evoked responses that occur in response to the acoustic stimulation by using the intracochlear electrode to detect signals representative of the evoked responses and receiving the detected signals by way of the extracochlear electrode and the probe.
摘要:
A binaural hearing system (“system”) enhances and/or preserves interaural level differences between first and second signals. The system includes first and second audio detectors associated with first and second ears of a user, respectively. The audio detectors detect an audio signal presented to the user and generate the first and second signals to represent the audio signal as detected at the first and second ears, respectively. The system also includes a first sound processor that receives the first signal from the first audio detector and the second signal from a second sound processor via a communication link with the second sound processor. The first sound processor generates a directional signal representative of a spatial filtering of the audio signal detected at the first ear according to an end-fire directional polar pattern and presents an output signal representative of the directional signal to the user at the first ear.
摘要:
A binaural cochlear implant system (system) includes first and second microphones associated with first and second ears of a patient, respectively. The microphones detect an audio signal presented to the patient and output first and second signals representative of the audio signal as detected at the first and second ears, respectively. The system also includes a first sound processor that receives the first signal from the first microphone and the second signal from a second sound processor by way of a communiation link with the second sound processors. The first sound processor generates first and second fine structure signals representative of fine structure information of the first and second fine structure signals, respectively, and generates a timing pulse signal based on the first and second fine structure signals. The first sound processor uses the timing pulse signal to represent to the patient an interaural time difference between the first and second signals.
摘要:
An exemplary method includes 1) detecting, by an auditory prosthesis configured to be implanted in a patient, a communicative coupling of a sound processor to the auditory prosthesis, the sound processor configured to be located external to the patient, and 2) logging, by the auditory prosthesis, data associated with an operation of the sound processor while the sound processor is communicatively coupled to the auditory prosthesis. Corresponding auditory prostheses and systems are also disclosed.
摘要:
An exemplary electro-acoustic stimulation (EAS) device includes 1) a detection facility configured to detect audio content presented to a patient and included in an acoustic stimulation frequency range, 2) an acoustic stimulation management facility configured to direct a loud-speaker to apply acoustic stimulation representative of the audio content included in the acoustic stimulation frequency range to the patient, and 3) an electrical stimulation management facility configured to direct a cochlear implant implanted within the patient to apply sub-threshold electrical stimulation to the patient by way of one or more electrodes disposed within an apical region of a cochlea of the patient together with the application of the acoustic stimulation. Corresponding systems and methods are also disclosed.
摘要:
An exemplary method includes a sound processor 1) mapping an analysis channel associated with a frequency band to a stimulation channel that comprises at least three electrodes communicatively coupled to an auditory prosthesis associated with a patient, 2) identifying a spectral peak included in an audio signal presented to the patient, the spectral peak having a peak frequency included in the frequency band, and 3) directing the auditory prosthesis to apply electrical stimulation representative of the spectral peak to a stimulation site associated with the peak frequency by simultaneously stimulating at least two of the at least three electrodes at substantially fifty percent or less of their respective most comfortable current levels (M levels) in accordance with a multi-monopolar current steering strategy. Corresponding methods and systems are also disclosed.
摘要:
An exemplary EMG response detection system may be configured to 1) direct an implantable stimulator to sequentially present a plurality of substantially identical stimulation events to a patient, 2) record a plurality of EMG signals generated by a muscle in the patient and each corresponding to a presentation of a particular stimulation event included in the plurality of substantially identical stimulation events, 3) determine an asynchronous component of each of the recorded EMG signals, and 4) utilize the asynchronous components of the recorded EMG signals to determine whether an EMG response is evoked by the stimulation events.
摘要:
An exemplary method includes 1) identifying, by a cochlear implant system, an electrode included within an array of electrodes as being a disabled electrode, 2) selecting, by the cochlear implant system, at least two non-adjacent electrodes surrounding the disabled electrode, and 3) simultaneously applying, by the cochlear implant system, stimulation current to the at least two non-adjacent electrodes to compensate for a loss of stimulation resulting from the disabled electrode. Corresponding methods and systems are also disclosed.
摘要:
Errors in pitch allocation within a cochlear implant are corrected in order to provide a significant and profound improvement in the quality of sound perceived by the cochlear implant user. The disclosure provides a tool for determining the implant fitting curve for cochlear implant system to correct pitch warping. The method presents familiar musical tunes to determine the implant fitting slope (relative alignment). In addition, in one embodiment, speech sounds may be used to determine the offset of the fitting line (absolute alignment). The use of music and speech to determine the implant fitting curve (line) and the slope is facilitated by using techniques to implement virtual electrodes to more precisely direct stimuli to the location or “place” on the cochlea.