摘要:
A method and apparatus for channel tracking is disclosed wherein pulse-shaping information is used to improve channel tracking performance. Information symbol values are prefiltered using the pulse shape information for a received baseband signal to generate a filtered waveform. The filtered waveform provides a reference signal for a medium response estimation. The estimated medium response is used with a coherent detector to detect unknown information symbols within the baseband signal. Medium response estimates can be determined for a single detected symbol sequence or for each hypothesized symbol sequence.
摘要:
A flexible sliding correlator for use in a spread spectrum receiver divides baseband signal samples into different groups, associates each group with a different section of a spreading code, and combines ones of the signal samples with corresponding values in the spreading code section. The groupings and spreading code sections can be changed during operation of the receiver to maximize performance of the receiver under different or changing conditions. In addition, the sample and spreading code value combinations can be further combined in different ways, and the further combinations can be changed during operation of the receiver. According to another aspect of the invention, the baseband signal can be sampled either uniformly or non-uniformly. The phase and frequency of the baseband sampling can be adjusted during operation of the receiver so that samples are taken very close to the optimum sampling position, at the peak of a chip waveform in the baseband signal.
摘要:
A flexible sliding correlator for use in a spread spectrum receiver divides baseband signal samples into different groups, associates each group with a different section of a spreading code, and combines ones of the signal samples with corresponding values in the spreading code section. The groupings and spreading code sections can be changed during operation of the receiver to maximize performance of the receiver under different or changing conditions. In addition, the sample and spreading code value combinations can be further combined in different ways, and the further combinations can be changed during operation of the receiver. According to another aspect of the invention, the baseband signal can be sampled either uniformly or non-uniformly. The phase and frequency of the baseband sampling can be adjusted during operation of the receiver so that samples are taken very close to the optimum sampling position, at the peak of a chip waveform in the baseband signal.
摘要:
A method and apparatus for evaluating signal strength of a channel received at a mobile station within a spread spectrum communication systems is disclosed. If the receiver at the mobile station receives a spread spectrum signal, a first sampling means converts the received signal into a first sample stream as a first sampling. A second sampling means converts the first sample stream into a second sample stream at a second sample rate, different from the first sample rate. The signal strength of a pilot channel is measured based upon the first and second sample streams.
摘要:
Multipath delay estimation of a direct sequence spread spectrum (DS-SS) signal transmitted in a multipath fading channel is accomplished by measuring the envelope of the signal to determine a new delay estimate. Delay estimates are also obtained in ray strength order, by subtracting out the influence of the stronger rays on the weaker ones. This subtraction approach can be performed iteratively, allowing further refinement of the delay estimates. Delay estimates can also be determined by minimizing the mean square error (MSE) between a measured correlation function and a modeled correlation function. The minimum mean square error (MMSE) approach can performed iteratively, to further refine the delay estimates. Maximum likelihood (ML) delay estimates can also be obtained by exploiting side information regarding the transmit and receive pulse shapes.
摘要:
According to the present invention, the effects of the transmission medium on transmitted information symbols are estimated separately from other effects, e.g., those associated with receive and transmit filters, using knowledge of the pulse shaping. The medium response estimate is then used to detect information symbols. Previously, receivers had used estimates of the composite channel to detect symbols. This, however, assumed uncorrelated noise, which is not always the case.
摘要:
A positioning system locates a mobile unit by compensating for component tolerances in time-of-arrivals of received signals at a plurality of positioning radio receivers. The system determines detection times of the received radio signals at the positioning radio receivers. The system takes into account pre-stored signal delays associated with one or more receiver stages of the corresponding positioning radio receivers and the detection times, for determining time-of-arrivals for the received radio signals.
摘要:
Emergency call handling may, in the near future, require terminal unit location information to be provided to emergency service centers. Exemplary embodiments of the present invention provide improved techniques for using a system of monitoring or adjunct stations to provide this location information to the emergency service centers. For example, either time of arrival (TOA) or time difference of arrival (TDOA) techniques can be selectively used to process received signals and provide location information. Techniques for improving timing estimates are also disclosed.
摘要:
According to the present invention, the effects of the transmission medium on transmitted information symbols are estimated separately from other effects, e.g., those associated with receive and transmit filters, using knowledge of the pulse shaping. The medium response estimate is then used to detect information symbols. Previously, receivers had used estimates of the composite channel to detect symbols. This, however, assumed uncorrelated noise, which is not always the case.
摘要:
According to the present invention, the effects of the transmission medium on transmitted information symbols are estimated separately from other effects, e.g., those associated with receive and transmit filters, using knowledge of the pulse shaping. The medium response estimate is then used to detect information symbols. Previously, receivers had used estimates of the composite channel to detect symbols. This, however, assumed uncorrelated noise, which is not always the case.