摘要:
A bus management node 11 has a register for channels in use REG1 and a bus capacity register REG2. Before starting the synchronous communication, each node 12 transmits a read-out command to the register for channels in use REG1 and the register for channels in use REG1 in order to read out their contents for ascertaining the number of the un-used channel and the residual capacity. If there is any un-used channel and any residual bus capacity, the node 12 transmits write commands to these registers REG1 and REG2 so that the number of the channel to be in use and the capacity of the bus to be in use will be stored in the register for channels in use REG1 and the bus capacity register REG2. This enables bus management to be achieved easily in a system performing synchronous communication between plural nodes connected to the bus.
摘要:
A bus management node 11 has a register for channels in use REG1 and a bus capacity register REG2. Before starting the synchronous communication, each node 12 transmits a read-out command to the register for channels in use REG1 in order to read out their contents for ascertaining the number of the un-used channel and the residual capacity. If there is any un-used channel and any residual bus capacity, the node 12 transmits write commands to these registers REG1 and REG2 so that the number of the channel to be in use and the capacity of the bus to be in use will be stored in the register for channels in use REG1 and the bus capacity register REG2. This enables bus management to be achieved easily in a system performing synchronous communication between plural nodes connected to the bus.
摘要:
A bus management node 11 has a register for channels in use REG1 and a bus capacity register REG2. Before starting the synchronous communication, each node 12 transmits a read-out command to the register for channels in use REG1 and the register for channels in use REG1 in order to read out their contents for ascertaining the number of the un-used channel and the residual capacity. If there is any un-used channel and any residual bus capacity, the node 12 transmits write commands to these registers REG1 and REG2 so that the number of the channel to be in use and the capacity of the bus to be in use will be stored in the register for channels in use REG1 and the bus capacity register REG2. This enables bus management to be achieved easily in a system performing synchronous communication between plural nodes connected to the bus.
摘要:
A bus management node 11 has a register for channels in use REG1 and a bus capacity register REG2. Before starting the synchronous communication, each node 12 transmits a read-out command to the register for channels in use REG1 and the register for channels in use REG1 in order to read out their contents for ascertaining the number of the un-used channel and the residual capacity. If there is any un-used channel and any residual bus capacity, the node 12 transmits write commands to these registers REG1 and REG2 so that the number of the channel to be in use and the capacity of the bus to be in use will be stored in the register for channels in use REG1 and the bus capacity register REG2. This enables bus management to be achieved easily in a system performing synchronous communication between plural nodes connected to the bus.
摘要:
A bus management node 11 has a register for channels in use REG1 and a bus capacity register REG2. Before starting the synchronous communication, each node 12 transmits a read-out command to the register for channels in use REG1 and the register for channels in use REG1 in order to read out their contents for ascertaining the number of the un-used channel and the residual capacity. If there is any un-used channel and any residual bus capacity, the node 12 transmits write commands to these registers REG1 and REG2 so that the number of the channel to be in use and the capacity of the bus to be in use will be stored in the register for channels in use REG1 and the bus capacity register REG2. This enables bus management to be achieved easily in a system performing synchronous communication between plural nodes connected to the bus.
摘要:
A bus management node 11 has a register for channels in use REG1 and a bus capacity register REG2. Before starting the synchronous communication, each node 12 transmits a read-out command to the register for channels in use REG1 and the register for channels in use REG1 in order to read out their contents for ascertaining the number of the un-used channel and the residual capacity If there is any un-used channel and any residual bus capacity, the node 12 transmits write commands to these registers REG1 and REG2 so that the number of the channel to be in use and the capacity of the bus to be in use will be stored in the register for channels in use REG1 and the bus capacity register REG2. This enables bus management to be achieved easily in a system performing synchronous communication between plural nodes connected to the bus.
摘要:
A precursor of a C-terminal amidated peptide represented by the general formula P-X-Gly-Y.sub.n, wherein P is a peptide residue. X is an amino acid residue the C terminal of which (on the Gly side) can be converted in vivo to a --CONH.sub.2 group. Gly is a glycine residue, Y is a basic amino acid residue, n is an interger of 2 to 4 and a further amino acid residue other than Y or a peptide residue may be attached to Y.sub.n, is produced by a gene engineering technology. The precursor exhibits in vivo physiological activity like the C-terminal amidated peptide.
摘要:
The present invention relates to a high concentration functional material gel composition and effective delivery composition thereof. More specifically, the present invention relates to a high concentration functional material gel composition comprising a small organic molecule having at least one of a carbonyl group and at least one of an isolated hydroxyl group from the carbonyl group as a defined mandatory element holding and delivering amounts of functional materials. This is achieved without depending on employing additional incompatible materials in the functional composition, including for example inorganic salts, polymers, absorbents petroleum waxes, and paraffin hydrocarbons.
摘要:
A data transmitter capable of preventing illegal free reception of transmitted data by scrambling the same, and a data receiver adapted to descramble the received data properly despite any alteration of a scramble program. The data transmitter comprises a data source where predetermined data to be transmitted is stored; a circuit for generating a scramble program and control data; a circuit for scrambling the predetermined data in accordance with the scramble program; a circuit for generating a descramble program; and a circuit for transmitting the scrambled data, the descramble program and the control data to the data receiving terminal of each user or contractor. The control data includes a scramble key, and the scrambled data is transmitted via a satellite network or a CATV network, while the descramble program is transmitted via a telephone line. The data receiver is equipped with a circuit for descrambling the received data in accordance with the descramble program, and a circuit for compiling an intermediate code, which is included in the descramble program and is not dependent on any hardware, into a machine code.
摘要:
A data broadcasting system for the low-cost delivery of character-heavy data such as newspapers and magazines. Newspaper or other data are transmitted from a newspaper publisher or service to an artificial satellite via a broadcasting center to be relayed to a subscriber. The subscriber receives the data by means of a receiver via an outdoor apparatus. The received data are sent to a recorder to be recorded on a recording medium such as a compact magneto-optical disc for later display.