摘要:
If magnitude relations between the output terminal voltage based on a DC negative terminal of the inverter and a threshold voltage that is a fixed value are compared, polarity thereof is changed at a predetermined rotor phase. The magnitude relation, for example, is detected by an inexpensive and simple apparatus such as a level shift circuit and a NOT circuit. The rotor phase of the permanent magnet synchronous motor is inferred on the basis of changes in the magnitude relation and if it is differentiated, a rotation speed is inferred. If the inferred values of the rotor phase and rotation speed are fed back to synchronous operation or vector control, the free-running permanent magnet synchronous motor is restarted.
摘要:
If magnitude relations between the output terminal voltage based on a DC negative terminal of the inverter and a threshold voltage that is a fixed value are compared, polarity thereof is changed at a predetermined rotor phase. The magnitude relation, for example, is detected by an inexpensive and simple apparatus such as a level shift circuit and a NOT circuit. The rotor phase of the permanent magnet synchronous motor is inferred on the basis of changes in the magnitude relation and if it is differentiated, a rotation speed is inferred. If the inferred values of the rotor phase and rotation speed are fed back to synchronous operation or vector control, the free-running permanent magnet synchronous motor is restarted.
摘要:
A motor control system includes a power converter, a vector controller for controlling the power converter, an axial error estimating operation for estimating an axial error which is a deviation between the phase estimation value and phase value of the motor, and a rotational speed estimating computing unit 5 for performing control so as to equalize the estimation value to a command of the axial error, a motor constant identification computing unit. The motor constant identification computing unit identifies a motor constant with a q-axis voltage component and a rotational speed identified value or a rotational speed command to reflect the identified motor constant in the vector controller.
摘要:
A synchronous electric motor drive system capable of driving at speeds near zero is provided. An energization mode determination unit switches six energization modes successively based on a terminal potential detected of the de-energized phase of a three-phase synchronous electric motor or on a stator winding wire connection point potential (neutral point potential) detected of the three-phase synchronous transmission unit. A voltage command correction unit corrects by a correction amount ΔV an applied voltage command destined for the synchronous electric motor to supply the synchronous electric motor with a repeated waveform of a positive pulse, negative pulse, and zero voltage as a line voltage waveform of the energized phases in each of the six energization modes, the positive pulse voltage being polarized to cause the synchronous electric motor to generate a forward rotation torque, the negative pulse voltage causing the synchronous electric motor to generate a reverse rotation torque.
摘要:
A position sensor-less driving method is provided that can drive rotation speed/torque control of a permanent magnet motor using an inverter with an ideal sinusoidal current with the minimum number of switching, and can drive at a speed as low as an extremely low speed region close to zero speed. A neutral point potential of a permanent magnet motor is detected in synchronization with PWM waveform of the inverter. A rotor position of the permanent magnet motor is estimated from change of the neutral point potential. When the neutral point potential is detected, timing of each phase of the PWM waveform is shifted to generate three or four types of switch states of which output voltage of the inverter is not zero vector, and neutral point potentials in at least two types of switch states among them are sampled, whereby rotor position of the three-phase synchronous motor is estimated.
摘要:
In a calculation for estimating axis error in a permanent magnet motor, a d-axis commanded voltage value is added to the product of three signals, which are a q-axis detected current value or commanded current value, an inductance value, and an estimated speed value, and then the resulting value is divided by the product of a commanded speed value ωr* and induced voltage constant Ke* or an arctangent calculation is performed in the same way, instead of using a resistance setting.
摘要:
A semiconductor power converter includes a power converter for converting direct current to three-phase alternating current or vice versa; a means for detecting a current in an alternating current side of the power converter; a means for providing a current reference in the alternating current side of the power converter; a current controller for calculating a voltage reference in the alternating current side of the power converter to match the current reference and a value of the detected current; and a pulse width modulation means for controlling the power converter through pulse width modulation based on the voltage reference, wherein the current reference is used in place of the value of the detected current for at least one phase current among three phase currents in the alternating current side.
摘要:
A vector control system for a permanent magnet synchronous motor, using a current control equivalent output value, a frequency instruction value, a current detection value, an inference phase error value, and a motor constant, identifies a motor resistance equivalent or a resistance setting error equivalent. Next, the vector control unit, using the identified value, corrects a set value R* equivalent of a voltage instruction calculation unit and a n inference phase error calculation unit.Thereby, a vector control system for a permanent magnet synchronous motor can realize a robust control characteristic for changing of a resistance constant of a motor in a low rotation speed area under position sensor-less control. Further, a vector control system for a permanent magnet synchronous motor can be applied in common in a system performing inexpensive current detection.
摘要:
In a system in which current is detected in an inexpensive manner or in a system in which a position detector is omitted, the present invention provides a high-efficiency vector controller for a permanent magnet motor that can minimize current at the same torque even when there is setting error (R−R*) in resistance. Even when a current value commanded for the d-axis is set to zero, a virtual inductance value calculated from a detected q-axis current value is used for output voltage value calculation and phase error estimation calculation; so even if there is setting error (R−R*) in resistance, current can be minimized at the same torque and thereby the present invention can provide a high-efficiency vector controller for a permanent magnet motor.
摘要:
A semiconductor power converter includes a power converter for converting direct current to three-phase alternating current or vice versa; a means for detecting a current in an alternating current side of the power converter; a means for providing a current reference in the alternating current side of the power converter; a current controller for calculating a voltage reference in the alternating current side of the power converter to match the current reference and a value of the detected current; and a pulse width modulation means for controlling the power converter through pulse width modulation based on the voltage reference, wherein the current reference is used in place of the value of the detected current for at least one phase current among three phase currents in the alternating current side.