摘要:
An improved new type pyrometer and a method for fusing an alumina pipe having a high purity are disclosed. The temperature-measuring portion of the pyrometer includes a protective pipe made of alumina having a purity of at least 99.9% and a temperature-measuring resistance element of a platinum or platinum-rhodium resistance wire and a holding portion made of alumina having a purity of at least 99.9%. Owing to the use of high purity alumina, the platinum or platinum-rhodium resistance wire is not contaminated and has stable temperature characteristics at high temperatures. According to the method of this invention, an end of an alumina pipe having a purity of at least 99.9% can be fused without the aid of any binder by fusing the end while evacuating air from the alumina pipe through its opposite end.
摘要:
In a subject fluid, there is placed an apparatus for measuring a change in state of the fluid, said apparatus having a tubular body which, in turn, contains therein at least one heating sensor employing so-called hot wire method. A quantity of the fluid is introduced into the tubular body and a temperature of the heating sensor is measured by the heating sensor itself as the quantity of the fluid having been introduced into the tubular body is maintained in a state of laminar flow or a static state. The laminar flow is generated by fluid impeller means such as impeller vane, screw-type vane or propeller vane assembly or uniaxial eccentric pump. The static state is maintained y providing gateway means for passage of the fluid into or out from the tubular body and closing such gateway means. A temperature of the fluid having been introduced into the tubular body and maintained in said laminar or static state is measured and discharged out from the tubular body upon completion of said temperature measurements. A change in state of the fluid is determined based on the temperatures of the fluid and the heating sensor.
摘要:
A molecular weight of a polymer is measured by a process including steps of: heating a polymer portion with a heating device, measuring, with a temperature measuring device, the difference between temperatures of at least two points of the polymer portion at each of which the polymer portion is subjected to a thermally different influence from each other by the heating device, and estimating the molecular weight of the polymer which corresponds to the difference between the temperatures obtained by the measuring step according to a relationship between the temperature difference and the molecular weight of the polymer which relationship has been beforehand obtained.
摘要:
There is provided a circulating line branched from a solution or suspension tank and returning again to this tank through a pump (15) used to control the flow velocity at a constant level. A fluid temperature is measured by a sensor (16) in said tank or said circulating line (14) while a temperature of a heating sensor (17) employing so-called electrically heating method and placed in said circulating line is measured. Concentration of a given subject in solution or suspension is determined based on a temperature of the heating sensor or a difference between a temperature of the heating sensor and a temperature of the fluid.
摘要:
The temperature of one or several sensors which are electrically heated or cooled to a temperature substantially different from a stagnant or running fluid surrounding the said sensor or sensors by applying an electric current to the said sensor or sensors, and the temperature of the said fluid are measured simultaneously to calculate the temperature difference between the said sensor or sensors and the said fluid at an equilibrium state of heat transfer at the surface of the said sensor or sensors, thereby measuring a change in state of the said fluid collectively on an in-line processing basis without disturbing the said fluid; a change in this state results in a change in heat transfer coefficient at the surface of the said sensor or sensors, the coefficient being collectively correlated with the viscosity, density, specific heat, thermal conductivity, thermal diffusivity, coefficient of volumetric expansion, flow speed or flow direction of the said fluid at a given temperature.
摘要:
A method for automatic measurement and control in curd making process is provided wherein an electrical current is supplied to an electrical conductor thermally contactable with milk stored in a curd tank so as to be heated to result in sufficiently higher temperature of the said conductor than the surrounding milk, temperatures or electrical resistances of the electrical conductor are measured in relation to time lapse, an elapsed time starting from the commencement of curdling is measured on the basis of a change in temperature or electrical resistance of the electrical conductor, and the elapsed time is compared with a predetermined curdling progress time ranging from the commencement of curdling to curd cutting so as to automatically judge a curd cutting timing.
摘要:
A heating sensor capable of generating heat and measuring its own temperature is placed in a fluid and a thermometric sensor is placed in the fluid and inside a temperature boundary layer formed around the heating sensor upon heat generation therefrom. A temperature of the heating sensor and a temperature of the fluid are measured. A relationship between thermal conductivity of the fluid and a differential value between the temperature of the heating sensor and the temperature of the fluid is used to determine the thermal conductivity of the fluid. Then, the heating value of the heating sensor is adjustably increased so that the thermometric sensor is positioned outside the temperature boundary layer. A temperature of the heating sensor and the temperature of the fluid are measured. The relationship between kinematic viscosity of the fluid and a differential value between the temperature of the heating sensor and the temperature of the fluid is used to determine the kinematic viscosity of the fluid. Alternatively, a single heating sensor and a pair of the thermometric sensors are used, where one of the thermometric sensors is placed outside the temperature boundary layer, and the other thermometric sensor is placed inside the temperature boundary layer, or a pair of the heating sensors is used with a single thermometric sensor placed outside the temperature boundary layer formed around one of the heating sensors and inside the temperature boundary layer formed around the other heating sensor.
摘要:
Two lead wires for each, connected to opposite ends of a heat generating element are secured to a holder. These lead wires form four-point-terminals at their other ends and thereby a disposable sensor is provided. A current source and a voltmeter are connected to the terminal and changes in various properties of fluid are determined on the basis of a value of current supplied from the current source and a value of voltage measured by the voltmeter.
摘要:
A method for measuring a heat transfer coefficient between a heat transfer element and a fluid comprising a measurement of a calorific value by placing the heat transfer element into the fluid and charing the heat transfer element with electricity. A calorific value of a particular surface of the heat transfer element is the true calorific value of the entire heat transfer element, since the particular surface of the heat transfer element is thermally insulated from a residual surface of the heat transfer element so as to prevent a heat transfer of the residual surface of the heat transfer element.
摘要:
A sensor for measuring the temperature of a liquid or semi-solid material by electrical heating. A core rod has disposed thereon a first electrically insulating member and a thin metal wire is wound about the first insulating member on the core rod. A second electrically insulating member covers the thin metal wire. When an electrical current is passed through the thin metal wire heat is generated in the thin metal wire. The resistance in the thin metal wire is proportional to the temperature thereof, which temperature is proportional to the current passed through the thin metal wire and the temperature of the liquid or semi-solid in which the sensor with the thin metal wire is disposed. Thus the temperature of the liquid or semi-solid can be determined by measuring the voltage or resistance in the thin metal wire by known measuring devices.