摘要:
An object of the present invention is to provide a water absorbent having excellent gel properties and showing excellent properties when used in a water-absorbing material of a sanitary/hygienic material such as paper diaper. Moreover, another object of the present invention is to provide a water absorbent which is safe and excellent in liquid permeability, and in which an amount of liquid permeability improver for improving the liquid permeability is reduced. The water absorbent is made from a water-absorbing resin prepared by a specific polymerization method and having a high degree of cross-linking, a high liquid holding property and a high gel strength (its swelling pressure of gel layer of is 35 kdyne/cm2 or more). This water absorbent is further processed to have a particular particle size distribution (95 wt % or more of its particles are less than 850ƒÊm but not less than 106ƒÊm, and logarithmic standard deviation (ƒĐƒÄ) is in a range of 0.25 to 0.45) and then surface cross-linked. After that, a liquid permeability improver is added therein.
摘要:
An object of the present invention is to provide a water absorbent having excellent gel properties and showing excellent properties when used in a water-absorbing material of a sanitary/hygienic material such as paper diaper. Moreover, another object of the present invention is to provide a water absorbent which is safe and excellent in liquid permeability, and in which an amount of liquid permeability improver for improving the liquid permeability is reduced. The water absorbent is made from a water-absorbing resin prepared by a specific polymerization method and having a high degree of cross-linking, a high liquid holding property and a high gel strength (its swelling pressure of gel layer of is 35 kdyne/cm2 or more). This water absorbent is further processed to have a particular particle size distribution (95 wt % or more of its particles are less than 850ƒÊm but not less than 106ƒÊm, and logarithmic standard deviation (ƒĐƒÄ) is in a range of 0.25 to 0.45) and then surface cross-linked. After that, a liquid permeability improver is added therein.
摘要:
An object of the present invention is to provide a water absorbent having excellent gel properties and showing excellent properties when used in a water-absorbing material of a sanitary/hygienic material such as paper diaper. Moreover, another object of the present invention is to provide a water absorbent which is safe and excellent in liquid permeability, and in which an amount of liquid permeability improver for improving the liquid permeability is reduced. The water absorbent is made from a water-absorbing resin prepared by a specific polymerization method and having a high degree of cross-linking, a high liquid holding property and a high gel strength (its swelling pressure of gel layer of is 35 kdyne/cm2 or more). This water absorbent is further processed to have a particular particle size distribution (95 wt % or more of its particles are less than 850ƒÊm but not less than 106ƒÊm, and logarithmic standard deviation (ƒĐƒÄ) is in a range of 0.25 to 0.45) and then surface cross-linked. After that, a liquid permeability improver is added therein.
摘要:
An object of the present invention is to provide a water absorbent having excellent gel properties and showing excellent properties when used in a water-absorbing material of a sanitary/hygienic material such as paper diaper. Moreover, another object of the present invention is to provide a water absorbent which is safe and excellent in liquid permeability, and in which an amount of liquid permeability improver for improving the liquid permeability is reduced. The water absorbent is made from a water-absorbing resin prepared by a specific polymerization method and having a high degree of cross-linking, a high liquid holding property and a high gel strength (its swelling pressure of gel layer of is 35 kdyne/cm2 or more). This water absorbent is further processed to have a particular particle size distribution (95 wt % or more of its particles are less than 850ƒÊm but not less than 106ƒÊm, and logarithmic standard deviation (ƒĐƒÄ) is in a range of 0.25 to 0.45) and then surface cross-linked. After that, a liquid permeability improver is added therein.
摘要:
The subject invention provides a hydrophilic polymer (water-absorbing resin) which is superior in performance and productivity. According to the production method of the present invention, a hydrophilichigh-molecular-weight compound is dispersed in an aqueous solution containing a hydrophilic monomer. The dispersed hydrophilic high-molecular-weight compound is dissolved by heat of neutralization (heat of hydration) and/or heat of polymerization generated in the process of producing a hydrophilic polymer.
摘要:
The subject invention provides a hydrophilic polymer (water-absorbing resin) which is superior in performance and productivity. According to the production method of the present invention, a hydrophilichigh-molecular-weight compound is dispersed in an aqueous solution containing a hydrophilic monomer. The dispersed hydrophilic high-molecular-weight compound is dissolved by heat of neutralization (heat of hydration) and/or heat of polymerization generated in the process of producing a hydrophilic polymer.
摘要:
The present invention relates to a method for continuous production of a water-absorbent resin by use of an continuous polymerization device having a charge part of a monomer aqueous solution; an endless belt on which the monomer and a hydropolymer formed are conveyed; and a discharge part of the hydropolymer, wherein the continuous polymerization device has side walls and a ceiling, and the space ratio in the device represented by the equation, “space ratio in the device=B/A”, is in the range of 1.2 to 20. In the equation, A is a maximum cross-sectional area (cm2) of the hydropolymer during the polymerization in the width direction of the endless belt, and B is a maximum cross-sectional area (cm2) of the space between the endless belt of the continuous polymerization device and the ceiling of the continuous polymerization device in the width direction of the endless belt.
摘要翻译:本发明涉及使用具有单体水溶液的电荷部分的连续聚合装置连续制造吸水性树脂的方法; 输送单体和形成的氢化聚合物的环状带; 和氢化聚合物的排出部分,其中连续聚合装置具有侧壁和天花板,并且由等式“器件中的空间比= B / A”表示的器件中的空间比在1.2 在该方程式中,A是在环形带的宽度方向上的聚合期间的氢化聚合物的最大横截面积(cm2),B是在环状带的宽度方向上的最大横截面积(cm2) 连续聚合装置的环形带和连续聚合装置的天花板在环形带的宽度方向上。
摘要:
There is disclosed a process to uniformly and rapidly carry out the mixing of a monomer liquid and a polymerization initiator and thus for the resulting polymer not to adhere to the inner surface of the piping or the inside of the apparatus in an art of producing a water-absorbent resin by continuously mixing the monomer liquid and the polymerization initiator together and thereby carrying out polymerization. This process comprises the steps of: (a) continuously supplying a monomer liquid 20 to such as a supply pipe 10 to continuously stir the monomer liquid 20 in the supply pipe 10 with such as a stirring apparatus 12; (b) causing a polymerization initiator 30 to join into a flow of the monomer liquid 20 being in a stirred state, thereby obtaining a mixed liquid 40 of the monomer liquid 20 and the polymerization initiator 30; and (c) continuously supplying the mixed liquid 40 from the supply pipe line 10 to a polymerization apparatus to cause the mixed liquid 40 to run a polymerization reaction.
摘要:
The present invention relates to a method for continuous production of a water-absorbent resin by use of an continuous polymerization device having a charge part of a monomer aqueous solution; an endless belt on which the monomer and a hydropolymer formed are conveyed; and a discharge part of the hydropolymer, wherein the continuous polymerization device has side walls and a ceiling, and the space ratio in the device represented by the equation, “space ratio in the device=B/A”, is in the range of 1.2 to 20. In the equation, A is a maximum cross-sectional area (cm2) of the hydropolymer during the polymerization in the width direction of the endless belt, and B is a maximum cross-sectional area (cm2) of the space between the endless belt of the continuous polymerization device and the ceiling of the continuous polymerization device in the width direction of the endless belt.
摘要翻译:本发明涉及使用具有单体水溶液的电荷部分的连续聚合装置连续制造吸水性树脂的方法; 输送单体和形成的氢化聚合物的环状带; 和氢化聚合物的排出部分,其中连续聚合装置具有侧壁和天花板,并且由等式“器件中的空间比= B / A”表示的器件中的空间比在1.2 在等式中,A是在环形带的宽度方向上的聚合期间的氢化聚合物的最大横截面积(cm 2),B是最大横截面积 连续聚合装置的环形带与连续聚合装置的天花板之间的距离(cm 2)在环形带的宽度方向上。
摘要:
A method for disintegrating a hydrate polymer characterized by disintegrating a hydrate polymer having a solid content in the range of 50-70 wt. % with a screw extruder while supplying 0.1-30 parts by weight of water per 100 parts by weight of the polymer to the extruder. Since the product of disintegration is prevented from inducing mutual adhesion, it does not form masses of conglomeration when it is dried.