摘要:
A wet-type solar battery including a support composed of a light transmissive material and a stack in which a conductive layer, a photoelectric conversion layer containing a porous semiconductor, a porous insulating layer, and a counter electrode conductive layer are stacked in this order is provided. The conductive layer is divided into a first region including a portion where the photoelectric conversion layer is to be formed on a surface thereof and a second region where the photoelectric conversion layer is not to be formed. A protection film for preventing internal short-circuiting, which is not greater in film thickness than the photoelectric conversion layer, is formed in at least a part around the photoelectric conversion layer on the surface of the first region.
摘要:
A wet-type solar battery including a support composed of a light transmissive material and a stack in which a conductive layer, a photoelectric conversion layer containing a porous semiconductor, a porous insulating layer, and a counter electrode conductive layer are stacked in this order is provided. The conductive layer is divided into a first region including a portion where the photoelectric conversion layer is to be formed on a surface thereof and a second region where the photoelectric conversion layer is not to be formed. A protection film for preventing internal short-circuiting, which is not greater in film thickness than the photoelectric conversion layer, is formed in at least a part around the photoelectric conversion layer on the surface of the first region.
摘要:
A solar cell includes a light transmissive substrate, a supporting substrate, a photoelectric conversion part and a counter electrode disposed between the light transmissive substrate and the supporting substrate in such a manner that they are spaced from each other; an electrolyte part disposed between the light transmissive substrate and the supporting substrate while being in contact with the photoelectric conversion part and the counter electrode, and a sealing part that surrounds and seals the electrolyte part in such a manner that the electrolyte part is retained within an electrolyte disposition region. First openings that make the electrolyte part communicate with the outside are provided at least in one end part in the electrolyte disposition region, and at least one second opening that makes the electrolyte part communicate with the outside is provided in the middle part in the electrolyte disposition region. The first and second openings are sealed.
摘要:
There are provided a photoelectric conversion element and a photoelectric conversion element module including the photoelectric conversion element, the photoelectric conversion element including a transparent substrate, a transparent conductive layer arranged on the transparent substrate, a photoelectric conversion layer arranged on the transparent conductive layer, a porous insulating layer arranged in contact with the photoelectric conversion layer, a reflective layer arranged in contact with the porous insulating layer, and a catalyst layer and a counter conductive layer that are arranged on the reflective layer, in which the photoelectric conversion layer contains a porous semiconductor, a carrier-transport material, and a photosensitizer, and in which the area of the orthogonal projection of the porous insulating layer onto the transparent substrate and the area of the orthogonal projection of the reflective layer onto the transparent substrate are each larger than the area of the orthogonal projection of the photoelectric conversion layer onto the transparent substrate.
摘要:
There are provided a photoelectric conversion element and a photoelectric conversion element module including the photoelectric conversion element, the photoelectric conversion element including a transparent substrate, a transparent conductive layer arranged on the transparent substrate, a photoelectric conversion layer arranged on the transparent conductive layer, a porous insulating layer arranged in contact with the photoelectric conversion layer, a reflective layer arranged in contact with the porous insulating layer, and a catalyst layer and a counter conductive layer that are arranged on the reflective layer, in which the photoelectric conversion layer contains a porous semiconductor, a carrier-transport material, and a photosensitizer, and in which the area of the orthogonal projection of the porous insulating layer onto the transparent substrate and the area of the orthogonal projection of the reflective layer onto the transparent substrate are each larger than the area of the orthogonal projection of the photoelectric conversion layer onto the transparent substrate.
摘要:
A dye-sensitized solar cell comprising at least a catalyst layer; a porous insulating layer containing an electrolyte in the inside; a porous semiconductor layer adsorbing a sensitizing dye and containing an electrolyte in the inside; and a second conductive layer laminated on a first conductive layer, wherein a contact face between the porous insulating layer or the porous semiconductor layer and the catalyst layer or the second conductive layer laminated adjacent to each other has an uneven form with a surface roughness coefficient Ra in a range of 0.05 to 0.3 μm.
摘要:
The present invention provides a dye-sensitized solar cell including: a transparent electrode; a counter electrode; a porous semiconductor layer having a dye sensitizer adsorbed therein; and a carrier transport layer containing an electrolytic solution therein, the porous semiconductor layer and the carrier transport layer being located between the transparent electrode and the counter electrode, wherein the electrolytic solution contains a heterocyclic compound comprising a heteroatom in the ring.
摘要:
A dye-sensitized solar cell module comprising: a plurality of electrically series-connected solar cells having a first conductive layer formed on an insulating substrate; a photoelectric conversion device formed on the first conductive layer; and a second conductive layer formed on the photoelectric conversion device, wherein the photoelectric conversion device has a photoelectric conversion layer having a porous semiconductor layer adsorbing a dye, a carrier transporting layer and a catalyst layer and the dye-sensitized solar cell module is characterized in that the second conductive layer of the above-described one solar cell contacts the first conductive layer of an adjacent another solar cell and the photoelectric conversion device of the above-described adjacent another solar cell contacts the second conductive layer of the above-described one solar cell.
摘要:
A wet solar cell includes a substrate having a light-receiving surface, a seal portion disposed opposite to the substrate, a first electrode formed on the top surface of a side of the substrate that is opposite to the seal portion, an insulating frame disposed between the first electrode and the seal portion to surround four sides so that a space is formed inside the insulating frame, a photoelectric conversion portion formed on a top surface of the first electrode, and a second electrode formed to extend toward the seal portion from a top surface of another first electrode adjacent to the first electrode and having a top surface partially located opposite to the seal portion. In the space, a gap communicating with the portion between the insulating frame and the photoelectric conversion portion is formed between the second electrode and the seal portion.
摘要:
A porous electrode of the present invention is a porous electrode in which at least a first porous layer, an intermediate layer and a second porous layer are stacked on a substrate in this order, characterized in that the first porous layer and the second porous layer are formed of particles of the same material, and the first porous layer and the intermediate layer are formed of particles of different materials from each other. Preferably, the average particle diameter of the particles constituting the first porous layer differ in average particle diameter from the particles constituting the second porous layer.