摘要:
An image rendering device realizes stereoscopic viewing of a joint background image. A DIBR unit 17 applies pixel shifting to each background image constructing the joint background image and also conducts boundary processing relative to the pixel shifting. The joint background image is composed of one or more background images stitched together along their edges on a three-dimensional model. The pixel shifting is to shift pixels of each background image in the row direction. The amount of shift applied to each pixel is determined based on the depth value of a corresponding pixel of a depth image. The boundary processing is to extract pixels shifted out of the display region of a given background image as a result of pixel shifting and add the extracted pixels to an edge of another background image adjacent to the given background image in the row direction.
摘要:
An image rendering device realizes stereoscopic viewing of composite images generated by compositing background three-dimensional models and foreground three-dimensional models each defined in three-dimensional modeling space. A texture mapping unit converts background image data into two or more viewpoint textures and maps each viewpoint texture to a background three-dimensional model in the three-dimensional modeling space. A viewport conversion unit extracts, for each of the two or more viewpoint textures, a viewport image from the background three-dimensional model mapped with the viewpoint texture and from the foreground three-dimensional model. By comparing a parallax of the foreground three-dimensional model occurring in stereoscopic playback with a parallax of the intra-texture object occurring in stereoscopic playback, the device determines depth relationship between the foreground three-dimensional model and the intra-texture object and adjusts positional relationship between the foreground three-dimensional model and the intra-texture object based on a result of the determination.
摘要:
An image rendering device realizes stereoscopic viewing of composite images generated by compositing background three-dimensional models and foreground three-dimensional models each defined in three-dimensional modeling space. A texture mapping unit converts background image data into two or more viewpoint textures and maps each viewpoint texture to a background three-dimensional model in the three-dimensional modeling space. A viewport conversion unit extracts, for each of the two or more viewpoint textures, a viewport image from the background three-dimensional model mapped with the viewpoint texture and from the foreground three-dimensional model. By comparing a parallax of the foreground three-dimensional model occurring in stereoscopic playback with a parallax of the intra-texture object occurring in stereoscopic playback, the device determines depth relationship between the foreground three-dimensional model and the intra-texture object and adjusts positional relationship between the foreground three-dimensional model and the intra-texture object based on a result of the determination.
摘要:
An image rendering device realizes stereoscopic viewing of a joint background image. A DIBR unit 17 applies pixel shifting to each background image constructing the joint background image and also conducts boundary processing relative to the pixel shifting. The joint background image is composed of one or more background images stitched together along their edges on a three-dimensional model. The pixel shifting is to shift pixels of each background image in the row direction. The amount of shift applied to each pixel is determined based on the depth value of a corresponding pixel of a depth image. The boundary processing is to extract pixels shifted out of the display region of a given background image as a result of pixel shifting and add the extracted pixels to an edge of another background image adjacent to the given background image in the row direction.
摘要:
The present invention provides a liquid crystal display panel which can prevent an electric short circuit (leakage) between a pair of substrates with no additional production step in the case where a multilayer spacer is used. The present invention is a liquid crystal display panel comprising: a pair of substrates; and a liquid crystal layer between the substrates, wherein a first substrate of the substrates has a support substrate, a plurality of pixel electrodes, transparent colored layers of plural colors overlapping with the pixel electrodes, and a multilayer spacer formed of a stacked body of three or more resin layers including transparent colored layers of plural colors, and a second substrate of the substrates has a supporting substrate and a common electrode.
摘要:
An optical fiber ribbon comprising a plurality of the coated optical fibers 2 arranged in plane and flame-retardant films 4a and 4b to integrate the coated optical fibers 2 is provided. The flame-retardant films 4a and 4b have an adhesive layer 5 formed thereon, and a plurality of the coated optical fibers 2 arranged in plane are integrated by the adhesive layer. The optical fiber ribbon 1 in this constitution uses flame-retardant films, wherein the ribbon thickness can be lowered and separation of single fiber can be facilitated by tearing off the film.
摘要:
An application information acquisition unit 405 transmits a device list of unconnected devices, which are owned devices recorded in a local storage 407 but not retrieved by a device retrieval unit 402, and connected devices, which are owned devices retrieved by the device retrieval unit 402, to an external server 107 via an external network. A service list display unit 406 displays a list of device cooperation services indicated in device cooperation service list information obtained by the application information acquisition unit 405 from the external server 107 and a list of devices determined to be owned devices by an owned device management unit 404 on a display unit 410, whereby a user is prompted to select a device cooperation service.
摘要:
A bytecode processing unit provided in a playback device is platform unit 20 that reads and runs a bytecode application recorded on read-only medium 105. The playback device includes: playback control unit 10 for controlling AV playback of digital streams; and machine unique function control unit 33 for performing machine unique functions unique to the playback device, to perform a control onto a content. APIs used by the bytecode application include API for playback control function, and API for socket communication. When the bytecode application requests playback control unit 10 to control the playback, it calls the playback control API to can instruct playback control unit 10 to execute the process. When the bytecode application requests execution of a machine unique function of the playback device, it instructs a machine unique function control unit to perform the process via a function call by the socket communication API.
摘要:
A BD-ROM stores PlayList information. The PlayList information defines a playback section of each of a plurality of AV clips and includes MainPath information and SubPath information. The MainPath information designates one of the AV clips as a Main Clip and defines a portion of the Main Clip as a primary playback section. The SubPath information designates another one of the AV clips as a SubClip and defines a portion of the SubClip as a secondary playback section that is to be played back in synchronism with the primary playback section. The BD-ROM stores, the one of the AV clips designated as the SubClip along with an EP_map. The EP_map shows a plurality of entry points on the SubClip in a one-to-one correspondence with entry times on the SubClip timeline.
摘要:
A PEB unit has a first heat plate and a second heat plate. After an exposure process for a resist film for EUV on a wafer and before a development process, the PEB unit heats the wafer through the first heat plate at a first heating temperature. A heating time through the first heat plate is not less than 10 seconds and not more than 30 seconds. Thereafter, the PEB unit heats the wafer through the second heat plate at a second heating temperature lower than the first heating temperature. A temperature difference between the first heating temperature and the second heating temperature is not less than 20° C. and not more than 60° C.