摘要:
A meritorious, commercially successful process for the recovery of a high-purity m-ethylphenol from ethylphenol mixtures containing m- and p-ethylphenols as the major components is disclosed. As it is well known in the art, the ethylphenol mixtures containing m- and p-ethylphenols as the major components can easily be prepared by ethylation of phenol with ethylene or ethanol by a simple operation. Accordingly, a process for the recovery of high-purity m-ethylphenol from ethylphenol mixtures containing m- and p-ethylphenols as the major components can give great influences in the commercial production of high-purity m-ethylphenol. m-Ethylphenol is a useful intermediate for the production of pharmaceuticals and agricultural chemicals. The process comprises simply contacting an ethylphenol mixture containing m- and p-ethylphenols as the major components with a specific crystalline aluminosilicate catalyst under heating.
摘要:
A process for producing an infusible and insoluble granular sulfurized material by reacting a petroleum heavy material and sulfur with stirring in the presence of a reaction medium and further in the presence of, if necessary, an infusible and insoluble solid material, and, further, a process for producing granular carbon comprising carbonizing the granular sulfurized material produced above or alternatively a process for producing granular activated carbon comprising carbonizing and activating the granular sulfurized material.
摘要:
A very simple process for preparing p-ethylphenol is disclosed. It is only necessary to contact phenol with an ethylating agent in vapor phase in the presence of a specific catalyst. The catalyst can be obtained by incorporating one or more alkoxysilanes to a crystalline aluminosilicte with a constraint index of 1-15 having a silica/alumina molar ratio of 20-400, wherein the amount of said alkoxysilanes to be incorporated is not less than 1.4 wt % calculated as silicon based on the amount of said crystalline aluminosilicate. Because the specific catalyst has the narrowed or restricted entrances of the micro pores of the crystalline aluminosilicate by the alkoxysilane treatment, it is possible to prepare p-ethylphenol in a high selectivity. The product contains only a very small amount of m-ethylphenol. The p-ethylphenol product obtained by the process of the present invention can be employed directly as raw materials for practical uses such as synthetic resins and antioxidants without m-ethylphenol elimination procedure.