摘要:
In the case where a specimen is imaged by a scanning electron microscope, it is intended to acquire an image of a high quality having a noise component reduced, thereby to improve the precision of an image processing. The intensity distribution of a beam is calculated on the basis of an imaging condition or specimen information, and an image restoration is performed by using a resolving power deterioration factor other than the beam intensity distribution as a target of a deterioration mode, so that a high resolving power image can be acquired under various conditions. In the scanning electron microscope for semiconductor inspections and semiconductor measurements, the restored image is used for pattern size measurement, defect detections, defect classifications and so on, so that the measurements can be improved in precision and so that the defect detections and classifications can be made high precise.
摘要:
In the case where a specimen is imaged by a scanning electron microscope, it is intended to acquire an image of a high quality having a noise component reduced, thereby to improve the precision of an image processing. The intensity distribution of a beam is calculated on the basis of an imaging condition or specimen information, and an image restoration is performed by using a resolving power deterioration factor other than the beam intensity distribution as a target of a deterioration mode, so that a high resolving power image can be acquired under various conditions. In the scanning electron microscope for semiconductor inspections and semiconductor measurements, the restored image is used for pattern size measurement, defect detections, defect classifications and so on, so that the measurements can be improved in precision and so that the defect detections and classifications can be made high precise.
摘要:
In the case where a specimen is imaged by a scanning electron microscope, it is intended to acquire an image of a high quality having a noise component reduced, thereby to improve the precision of an image processing. The intensity distribution of a beam is calculated on the basis of an imaging condition or specimen information, and an image restoration is performed by using a resolving power deterioration factor other than the beam intensity distribution as a target of a deterioration mode, so that a high resolving power image can be acquired under various conditions. In the scanning electron microscope for semiconductor inspections and semiconductor measurements, the restored image is used for pattern size measurement, defect detections, defect classifications and so on, so that the measurements can be improved in precision and so that the defect detections and classifications can be made high precise.
摘要:
Defect image display screens are capable of accurately presenting features of defects. On a thumbnail display screen of a defect, images likely to most clearly indicating features of the defect are determined in units of the defect from, for example, inspection information and a defect type, and then are displayed. On a detail display screen of a defect, for example, images for being displayed so as to clearly indicate features of the defect, and the display sequence thereof are determined in accordance with, for example, inspection information and a defect type, and then are displayed. Further, steps for acquiring a display image during or after defect image acquisition by using, for example, a different defect image acquisition apparatus and a different imaging condition in accordance with preliminarily specified rules are added to an imaging sequence (procedure).
摘要:
An optical inspection apparatus is provided which suppresses the influence of quantum noise including: light irradiator which irradiates a sample with light; reference light emitter which emits reference light; light interference unit which generates interfering light through interference between transmitted light, scattered light, or reflected light from the sample irradiated with light by the light irradiator, and the reference light emitted by the reference light emitter; light detector which detects the interfering light generated by the light interference unit; defect identifier which identifies the presence or absence of a defect based on a detection signal obtained by the light detector detecting the interfering light; and light convertor which converts at least the state of the transmitted, scattered, or reflected light from the sample, the state of the reference light emitted by the reference light emitter, or the state of the interfering light generated by the light interference unit.
摘要:
An optical inspection apparatus is provided which suppresses the influence of quantum noise including: light irradiator which irradiates a sample with light; reference light emitter which emits reference light; light interference unit which generates interfering light through interference between transmitted light, scattered light, or reflected light from the sample irradiated with light by the light irradiator, and the reference light emitted by the reference light emitter; light detector which detects the interfering light generated by the light interference unit; defect identifier which identifies the presence or absence of a defect based on a detection signal obtained by the light detector detecting the interfering light; and light convertor which converts at least the state of the transmitted, scattered, or reflected light from the sample, the state of the reference light emitted by the reference light emitter, or the state of the interfering light generated by the light interference unit.
摘要:
Defect image display screens are capable of accurately presenting features of defects. On a thumbnail display screen of a defect, images likely to most clearly indicating features of the defect are determined in units of the defect from, for example, inspection information and a defect type, and then are displayed. On a detail display screen of a defect, for example, images for being displayed so as to clearly indicate features of the defect, and the display sequence thereof are determined in accordance with, for example, inspection information and a defect type, and then are displayed. Further, steps for acquiring a display image during or after defect image acquisition by using, for example, a different defect image acquisition apparatus and a different imaging condition in accordance with preliminarily specified rules are added to an imaging sequence (procedure).
摘要:
Design data and sample characteristic information corresponding to individual areas on the design data are used to perform an image quality improvement operation to make appropriate improvements on image quality according to sample characteristic corresponding to the individual areas on the image, allowing a high speed area division on the image. Further, the use of a database that stores image information associated with the design data allows for an image quality improvement operation that automatically emphasizes portions of the image that greatly differ from past images of the similar design data.
摘要:
In order to obtain a quality image without deterioration owing to radiation noise in inspection using the optical video camera in high radiation environment, an inspection apparatus is formed of an image pick-up unit, an image obtaining unit which fetches a video image that contains a signal (noise) that is substantially independent of each frame obtained by the image pick-up unit, a local alignment unit which locally aligns frames with different time phases for forming the image fetched by the image obtaining unit, a frame synthesizing unit which synthesizes the plurality of frames aligned by the local alignment unit for generating a synthesis frame with an SN ratio higher than the SN ratio of the frame before frame synthesis, and an image output unit for displaying or recording the image formed of the synthesis frame generated by the frame synthesizing unit.
摘要:
In an ultrasonic diagnosis device, while a signal component is preserved, a factor of degrading image quality such as a flicker of a noise is suppressed. An input image is separated into a signal component image and a noise component image. After frame synthesis processing is performed on the noise component image, the signal component image is synthesized with the noise component image having undergone the frame synthesis. Thus, the noise is suppressed. Otherwise, after the input image is separated into the signal component image and noise component image, the frame synthesis processing is performed on the signal component image. The noise component image is then synthesized with the signal component image having undergone the frame synthesis. Thus, discernment of a signal can be improved.