摘要:
A method for reviewing defect, comprising the steps of: as an image acquisition step, imaging a surface of a sample using arbitrary image acquisition condition selected from a plurality of image acquisition conditions and obtaining a defect image; as a defect position calculation step, proceeding the defect image obtained by the image acquisition step and calculating a defect position on the surface of the sample; as a defect detection accuracy calculation step, obtaining a defect detection accuracy of the defect position calculated by the defect position calculation step; and as a conclusion determination step, determinating whether the defect detection accuracy obtained by the defect detection accuracy calculation step meets a predetermined requirement or not; wherein until it is determined that the defect detection accuracy obtained by the defect detection accuracy calculation step meets a predetermined in the conclusion determination step, the image acquisition condition is selected from the plurality of image acquisition conditions once again and the image acquisition step, the defect position calculation step, the defect detection accuracy calculation step and the conclusion determination step are repeated.
摘要:
A defect observation device including an input-output unit supplied with information of a taught defect, and information of an ideal output of the taught defect, and configured to display a processing result based upon a determined image processing parameter set; and an automatic determination unit configured to: select image processing parameter sets which are less in number than the total number of all image processing parameter sets, out of all image processing parameter sets, calculate image processing results on an input defect image, by using the selected image processing parameter sets, calculate a coincidence degree for each of the selected image processing parameter sets, estimate distribution of an index value in all image processing parameter sets from distribution of the coincidence degree for the selected image processing parameter sets, and determine an image processing parameter set to have a high coincidence degree out of all image processing parameter sets.
摘要:
A defect observation device supplied with a taught defect and an ideal output obtained by conducting image processing on the taught defect as its input and capable of conducting work of setting image processing parameters required to classify defect kinds easily and fast is provided.The defect observation device includes an input-output unit 123 which is supplied with information of a taught defect and information of an ideal output of the taught defect and which displays a processing result based upon a determined image processing parameter set, and an automatic determination unit 124 for selecting image processing parameter sets which are less in number than the total number of all image processing parameter sets, out of all image processing parameter sets, calculating image processing results on an input defect image, by using the selected image processing parameter sets, calculating a coincidence degree for each of the selected image processing parameter sets, estimating distribution of an index value in all image processing parameter sets from distribution of the coincidence degree for the selected image processing parameter sets, and determining an image processing parameter set having a high coincidence degree out of all image processing parameter sets.
摘要:
Design data and sample characteristic information corresponding to individual areas on the design data are used to perform an image quality improvement operation to make appropriate improvements on image quality according to sample characteristic corresponding to the individual areas on the image, allowing a high speed area division on the image. Further, the use of a database that stores image information associated with the design data allows for an image quality improvement operation that automatically emphasizes portions of the image that greatly differ from past images of the similar design data.
摘要:
A specimen image capture method using a charged particle microscope device includes: a first image acquisition step in which the gain of a detector in a charged particle microscope is set to a first gain value, charged particle beam scanning is carried out on a specimen, and a first image is obtained; a second image acquisition step in which the gain of the detector is set to a second gain value, which is different to the first gain value, charged particle beam scanning is carried out on the specimen, and a second image is obtained; and an image combination step in which the first gain value and the second gain value are used and the first image and the second image are combined.
摘要:
An optical inspection apparatus is provided which suppresses the influence of quantum noise including: light irradiator which irradiates a sample with light; reference light emitter which emits reference light; light interference unit which generates interfering light through interference between transmitted light, scattered light, or reflected light from the sample irradiated with light by the light irradiator, and the reference light emitted by the reference light emitter; light detector which detects the interfering light generated by the light interference unit; defect identifier which identifies the presence or absence of a defect based on a detection signal obtained by the light detector detecting the interfering light; and light convertor which converts at least the state of the transmitted, scattered, or reflected light from the sample, the state of the reference light emitted by the reference light emitter, or the state of the interfering light generated by the light interference unit.
摘要:
It is possible to improve an image quality of an ultrasonographic device and improve visibility of a tissue structure and a lesion. According to a noise amount estimated for each of at least two resolution levels and reliability of the noise amount estimation, a corrected noise amount is calculated. An intensity conversion is performed on a decomposition coefficient obtained by a multi-resolution decomposition process using the corrected noise amount. Moreover, by performing intensity conversion of the respective decomposition coefficients according to a plurality of decomposition coefficients, it is possible to generate a high-quality image. Furthermore, by switching processing parameters in accordance with the imaging condition, the image type, and the imaging object, it is possible to simultaneously realize the processing time and the image quality appropriate for the purpose.
摘要:
The invention relates to a technique of improving a contrast of a lower-layer pattern in a multi layer by synthesizing detected signals from a plurality of detectors by using an appropriate allocation ratio in accordance with pattern arrangement. In a charged particle beam device capable of improving image quality by using detected images obtained from a plurality of detectors and in a method of improving the image quality, a method of generating one or more output images from detected images corresponding to respective outputs of the detectors that are arranged at different locations is controlled by using information of a pattern direction, an edge strength, or others calculated from a design data or the detected image. In this manner, a detection area of the detected signals can be expanded by using the plurality of detectors, and the image quality such as the contrast can be improved by synthesizing the detected signals by using the pattern direction or the edge strength calculated from the design data or the detected images.
摘要:
Design data and sample characteristic information corresponding to individual areas on the design data are used to perform an image quality improvement operation to make appropriate improvements on image quality according to sample characteristic corresponding to the individual areas on the image, allowing a high speed area division on the image. Further, the use of a database that stores image information associated with the design data allows for an image quality improvement operation that automatically emphasizes portions of the image that greatly differ from past images of the similar design data.
摘要:
Defect image display screens are capable of accurately presenting features of defects. On a thumbnail display screen of a defect, images likely to most clearly indicating features of the defect are determined in units of the defect from, for example, inspection information and a defect type, and then are displayed. On a detail display screen of a defect, for example, images for being displayed so as to clearly indicate features of the defect, and the display sequence thereof are determined in accordance with, for example, inspection information and a defect type, and then are displayed. Further, steps for acquiring a display image during or after defect image acquisition by using, for example, a different defect image acquisition apparatus and a different imaging condition in accordance with preliminarily specified rules are added to an imaging sequence (procedure).