Abstract:
The invention relates to a rotary tool as well as to a carrier and a cutting insert of such a rotary tool. The carrier comprises a seat, which comprises several lateral surfaces, between which the cutting insert can be inserted. The cutting insert comprises, for each of the lateral surfaces, a contact surface which abuts against the respective lateral surface in an inserted state. At least one coolant channel is formed, which comprises a first partial channel and a second partial channel, which adjoins the first partial channel, wherein the first partial channel proceeds within the carrier up to an outlet opening, wherein the second partial channel proceeds within the cutting insert from an inlet opening up to a coolant outlet, wherein the outlet opening and the inlet opening form an interface for transferring coolant from the carrier to the cutting insert. The outlet opening is arranged in one of the lateral surfaces and the inlet opening is arranged in one of the contact surfaces.
Abstract:
A drill has at least one main cutting edge (22) and a helical flute (20) abutting the main cutting edge (22). The surface of the flute (20) has a spiral segment (28) and an edge segment (30) abutting the main cutting edge (22). The roughness of the edge segment (30) is less than the roughness of the spiral segment (28). Furthermore, a method for producing a drill is provided.
Abstract:
In one aspect, blanks for rotary tooling applications are described herein. Such blanks can employ architectures realizing material efficiencies and temporal efficiencies when processed into rotary cutting tools. For example, a rotary cutting tool blank described herein comprises a plurality of interior channels extending along a longitudinal axis of the blank, the interior channels having radial positioning for external exposure along an axial length of cut of the rotary cutting tool upon introduction flutes to the blank.
Abstract:
A method is provided for processing a workpiece by means of a drill, wherein the drill extends along a longitudinal axis and has a drill tip with a nose angle (S) that is less than 180°, wherein the drill has a lateral surface, on which at least one side blade is formed, which is designed for milling by means of a feeding in a transverse direction (Q) to the longitudinal axis (L), wherein the workpiece has a surface (O), through which a drill hole is drilled, in that in a first step a plane surface is milled into the surface (O) and subsequently in a second step the drill hole is drilled from the plane surface outwards, wherein the plane surface is milled by means of the side blade of the drill in that it is fed forward in a transverse direction (Q) to the longitudinal axis (L), wherein the drill hole is drilled by means of the same drill in that it is fed forward in the direction of the longitudinal axis (L). Further, a corresponding drill is provided.
Abstract:
The radial run-out tool (2), particularly a drill or a cutter, has a basic body (12) extending in an axial direction (4) and comprises at least two chip grooves (14), to which a guide chamfer (22) is connected in the rotational direction (24), with a ridge (15) being formed between them. A radial clearance is connected to the guide chamfer (22). In order to enable simple and economical production of such type of radial run-out tool (2), an unprocessed rod (30) is ground non-concentrically, in a first process step, such that a radius (R) of the unprocessed rod (30) varies, depending on the angle, between a maximum radius (R2) and a minimum radius (R1). In a second process step, the chip grooves (14) are grounded down such that the guide chamfers (22) are formed at the positions with the maximum radius (R2) and the radius (R) is subsequently reduced downstream of the respective guide chamfer (22) in order to form the radial clearance (28).
Abstract:
A process for producing a tool having a main body which extends in a longitudinal direction and at least one blade for machining a workpiece includes providing a base coating on the tool; grinding the at least one blade in a manner that removes the base coating in the region of the at least one blade; and providing a second, fine coating, to the at least one ground blade.
Abstract:
The combination tool (2), in particular a drilling/chamfering tool, comprises a drill (6) extending in the longitudinal direction (4) with a clamping sleeve (8), which is designed to receive the drill (6) and fasten the drill (6) at a variable length and which has a holding seat (38) for a cutting insert (12). The drill (6) comprises a cutting region (22) provided with grooves (14), wherein the grooves (14) extend helically and are formed between two grooves (14) drill backs (18). At least one of the drill backs (18) is partially flattened to form an adjustment surface (16) for the cutting insert (12), wherein the adjustment surface (16) extends helically. As a result, a length adjustment over a large length range is made possible independently of the twist angle (γ).
Abstract:
The invention relates to a step drill having a shaft section extending along a longitudinal axis of the step drill and a cutting section with a cutting tip, and having a chip-breaking geometry which comprises a concavely curved surface and is configured such that ribbon chips are broken on the concavely curved surface during rotation of the step drill, whereby the chip-breaking geometry is disposed on a reaming step of the step drill.
Abstract:
The drill head (2) extends along a rotational axis (24) in the axial direction (22) and has a central area (6) on the front with first main cutting edges (26), an intermediate area (8) connecting thereto, and an outer area (10) in turn connecting thereto with second main cutting edges (30). The intermediate area (8) in this case expands in the axial direction (22) toward the outer area (10) and in particular forms an expanding conical shell. A centering effect is hereby achieved via the intermediate area (8).
Abstract:
The radial run-out tool (2), particularly a drill or a cutter, has a basic body (12) extending in an axial direction (4) and comprises at least two chip grooves (14), to which a guide chamfer (22) is connected in the rotational direction (24), with a ridge (15) being formed between them. A radial clearance is connected to the guide chamfer (22). In order to enable simple and economical production of such type of radial run-out tool (2), an unprocessed rod (30) is ground non-concentrically, in a first process step, such that a radius (R) of the unprocessed rod (30) varies, depending on the angle, between a maximum radius (R2) and a minimum radius (R1). In a second process step, the chip grooves (14) are grounded down such that the guide chamfers (22) are formed at the positions with the maximum radius (R2) and the radius (R) is subsequently reduced downstream of the respective guide chamfer (22) in order to form the radial clearance (28).