摘要:
A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and hold time fatigue crack growth behavior. A particular example of a component is a powder metallurgy turbine disk of a gas turbine engine. The gamma-prime nickel-base superalloy contains, by weight, 18.0 to 30.0% cobalt, 11.4 to 16.0% chromium, up to 6.0% tantalum, 2.5 to 3.5% aluminum, 2.5 to 4.0% titanium, 5.5 to 7.5% molybdenum, up to 2.0% niobium, up to 2.0% hafnium, 0.04 to 0.20% carbon, 0.01 to 0.05% boron, 0.03 to 0.09% zirconium, the balance essentially nickel and impurities, wherein the titanium:aluminum weight ratio is 0.71 to 1.60.
摘要:
A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and hold time fatigue crack growth behavior. A particular example of a component is a powder metallurgy turbine disk of a gas turbine engine. The gamma-prime nickel-base superalloy contains, by weight, 16.0 to 30.0% cobalt, 11.5 to 15.0% chromium, 4.0 to 6.0% tantalum, 2.0 to 4.0% aluminum, 1.5 to 6.0% titanium, up to 5.0% tungsten, 1.0 to 7.0% molybdenum, up to 3.5% niobium, up to 1.0% hafnium, 0.02 to 0.20% carbon, 0.01 to 0.05% boron, 0.02 to 0.10% zirconium, the balance essentially nickel and impurities, wherein the titanium:aluminum weight ratio is 0.5 to 2.0.
摘要:
A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and hold time fatigue crack growth behavior. A particular example of a component is a powder metallurgy turbine disk of a gas turbine engine. The gamma-prime nickel-base superalloy contains, by weight, 16.0 to 30.0% cobalt, 11.5 to 15.0% chromium, 4.0 to 6.0% tantalum, 2.0 to 4.0% aluminum, 1.5 to 6.0% titanium, up to 5.0% tungsten, 1.0 to 7.0% molybdenum, up to 3.5% niobium, up to 1.0% hafnium, 0.02 to 0.20% carbon, 0.01 to 0.05% boron, 0.02 to 0.10% zirconium, the balance essentially nickel and impurities, wherein the titanium:aluminum weight ratio is 0.5 to 2.0.
摘要:
A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and hold time fatigue crack growth behavior. A particular example of a component is a powder metallurgy turbine disk of a gas turbine engine. The gamma-prime nickel-base superalloy contains, by weight, 18.0 to 30.0% cobalt, 11.4 to 16.0% chromium, up to 6.0% tantalum, 2.5 to 3.5% aluminum, 2.5 to 4.0% titanium, 5.5 to 7.5% molybdenum, up to 2.0% niobium, up to 2.0% hafnium, 0.04 to 0.20% carbon, 0.01 to 0.05% boron, 0.03 to 0.09% zirconium, the balance essentially nickel and impurities, wherein the titanium:aluminum weight ratio is 0.71 to 1.60.
摘要:
A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and dwell fatigue crack growth behavior. The superalloy contains, by weight, 10.00 to 22.0% cobalt, 10.0 to 14.0% chromium, 4.0 to 6.0% tantalum, 2.0 to 4.0% aluminum, 2.0 to 6.0% titanium, 1.5 to 5.0% tungsten, 1.5 to 5.0% molybdenum, 1.0 to 3.5% niobium, 0.05 to 0.6% hafnium, 0.02 to 0.10% carbon, 0.01 to 0.40% boron, 0.02 to 0.10% zirconium, the balance essentially nickel and impurities, wherein the titanium:aluminum weight ratio is 0.7 to 1.5. The superalloy is hot worked and heat treated to contain cellular gamma prime precipitates that distort grain boundaries, creating tortuous grain boundary fracture paths that are believed to promote the fatigue crack growth resistance of the superalloy.
摘要:
An article is prepared by furnishing a plurality of powder particle substrates made of a substrate metal, providing a nonmetallic precursor of a metallic coating material, wherein the metallic coating material comprises an alloying element that is thermophysically melt incompatible with the substrate metal, contacting the powder particle substrates with the nonmetallic precursor, chemically reducing the nonmetallic precursor to form coated powder particles comprising the powder particle substrates having a surface-enriched layer of the metallic coating material thereon without melting the powder particle substrates, and processing the coated powder particles to form the article, without melting the powder particle substrates.
摘要:
A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and dwell fatigue crack growth behavior. The superalloy contains, by weight, 10.00 to 22.0% cobalt, 10.0 to 14.0% chromium, 4.0 to 6.0% tantalum, 2.0 to 4.0% aluminum, 2.0 to 6.0% titanium, 1.5 to 5.0% tungsten, 1.5 to 5.0% molybdenum, 1.0 to 3.5% niobium, 0.05 to 0.6% hafnium, 0.02 to 0.10% carbon, 0.01 to 0.40% boron, 0.02 to 0.10% zirconium, the balance essentially nickel and impurities, wherein the titanium:aluminum weight ratio is 0.7 to 1.5. The superalloy is hot worked and heat treated to contain cellular gamma prime precipitates that distort grain boundaries, creating tortuous grain boundary fracture paths that are believed to promote the fatigue crack growth resistance of the superalloy.
摘要:
A method of forming a component from a gamma prime precipitation-strengthened nickel-base superalloy. The method entails formulating the superalloy to have a sufficiently high carbon content and forging the superalloy at sufficiently high local strain rates so that, following a supersolvus heat treatment, the component is characterized by a fine and substantially uniform grain size distribution, preferably finer than ASTM 7 and more preferably in a range of about ASTM 8 to 10.
摘要:
A gamma prime precipitation-strengthened nickel-base superalloy and method of forging an article from the superalloy to promote a low cycle fatigue resistance and high temperature dwell behavior of the article. The superalloy has a composition of, by weight, 16.0-22.4% cobalt, 6.6-14.3% chromium, 2.6-4.8% aluminum, 2.4-4.6% titanium, 1.4-3.5% tantalum, 0.9-3.0% niobium, 1.9-4.0% tungsten, 1.9-3.9% molybdenum, 0.0-2.5% rhenium, greater than 0.05% carbon, at least 0.1% hafnium, 0.02-0.10% boron, 0.03-0.10% zirconium, the balance nickel and incidental impurities. A billet is formed of the superalloy and worked at a temperature below the gamma prime solvus temperature of the superalloy so as to form a worked article, which is then heat treated above the gamma prime solvus temperature of the superalloy to uniformly coarsen the grains of the article, after which the article is cooled to reprecipitate gamma prime. The article has an average grain size of not coarser than ASTM 7 and is substantially free of critical grain growth.
摘要:
Gamma prime nickel-base superalloy and components formed therefrom. The alloy contains, by weight, 11.3 to 13.3% cobalt, 12.4 to 15.2% chromium, 2.1 to 2.7% aluminum, 3.6 to 5.8% titanium, 3.5 to 4.5% tungsten, 3.1 to 3.8% molybdenum, 0.0 to 1.2% niobium, 0.0 to 2.3% tantalum, 0.0 to 0.5% hafnium, 0.040 to 0.100% carbon, 0.010 to 0.046% boron, 0.030 to 0.080% zirconium, the balance nickel and impurities, wherein the Nb+Ta content is 0.0-3.5%.