Abstract:
To provide an image editing technique that enables a user to perform movement and magnification of an image with a single operation, and to perform trimming while grasping image composition in printing, the image editing method includes a step of instructing to move an arbitrary point of an image displayed in an image display area among image data; a step of calculating an image movement amount and a magnification ratio in response to the instruction to move the arbitrary point; and a step displaying a predetermined area of the image data in the image display area on the basis of the image movement amount and the magnification ratio, which are calculated in the calculating step.
Abstract:
To generating a mosaic image by combining a plurality of material images, an original image is divided into tiles and a material image having a characteristic similar to that of an image in each tile is applied to the tile. If more than one version of image data having different resolutions is provided as the image data for the material image, a low-resolution version of the image data is used to calculate a characteristic quantity of the image. Thus, the amount of time required to generate the mosaic image can be reduced.
Abstract:
This invention provides structured document data and a contents processing method, which can assure high versatility and process each individual required information using an application corresponding to processing performance in each device, so as to solve the problems in the aforementioned conventional description method. Structured document data according to this invention has designation information that designates an item position of a list held in a first document element which holds item information associated with a reference destination of contents as a list, and a second document element that holds information required to present the contents at the reference destination described in the item information corresponding to the designation information.
Abstract:
An image as a basis of a mosaic image is segmented into M×N areas by the process shown in FIG. 4 (S300), and the image characteristics of the segmented areas (S301), and those of source images (S305) are obtained. When the source image is a moving image, the image characteristics of that moving image are obtained from those of a plurality of still images in the moving image (S304). Source images corresponding to the segmented areas are determined (S309) and pasted (S310), thus generating a mosaic image.
Abstract:
This invention provides structured document data and a contents processing method, which can assure high versatility and process each individual required information using an application corresponding to processing performance in each device, so as to solve the problems in the aforementioned conventional description method. Structured document data according to this invention has designation information that designates an item position of a list held in a first document element which holds item information associated with a reference destination of contents as a list, and a second document element that holds information required to present the contents at the reference destination described in the item information corresponding to the designation information.
Abstract:
In the retrieval of images that resemble a target image from a plurality of images, the image feature quantity of the target image is calculated when the target image is specified. The feature quantity is calculated upon removing an unnecessary area from the specified target image, and retrieval of resembling images is performed using the feature quantity that has been calculated. The unnecessary area is determined automatically based upon a change in luminance in directions vertically and horizontally of the periphery of the target image. Thus, the calculation of feature quantities from which unnecessary portions in an image have been eliminated can be executed with ease and more effective retrieval of resembling images can be carried out.
Abstract:
There are provided an image processing method and apparatus for generating a mosaic image by combining a plurality of material images in a mosaic pattern. The number of material images is increased on the basis of a plurality of stored material images, material images added by capturing a moving image, or the like, and a mosaic image with higher image quality is generated based on such material images.
Abstract:
A PC card camera has a structure in which a universal joint to which a video camera is attached is mounted on a PC card body. The video camera comprises an optical lens unit and a solid-state area sensor of the photoelectric transducer type. The universal joint holds the video camera in such a manner that the angular position thereof can be adjusted freely with respect to the PC card. The PC card body is provided with a guide for guiding the card into a slot provided in a personal computer, a connector for connecting the PC card to the personal computer, and a cut-out which prevents the PC card from being inserted incorrectly. With the PC card connected to the personal computer, the angular position of the video camera can be adjusted via the universal joint.
Abstract:
A 3D video processing device includes a disparity map generator which compares a first-perspective image from a first perspective with a second-perspective image from a second perspective, which are two images forming stereoscopic video, thereby generates a disparity map which represents disparity of the second-perspective image with respect to the first-perspective image, a first new image generator which rotates the first-perspective image based on rotation angle information which represents rotation statuses of the first- and the second-perspective images, thereby generates a new first-perspective image, and a second new image generator which generates a new second-perspective image, which is paired with the new first-perspective image to form stereoscopic video, based on the first-perspective image and on the disparity map.
Abstract:
Since a plurality of image data are stored in a single file, high-speed access to image data and easy management of image data are allowed, and information that pertains to each image data can be acquired from a source outside the image file. As an arrangement for this purpose, an image data area (202) continuously stores a plurality of compressed image data. An index area (204) stores reference information to a source outside the file, which pertains to each of the plurality of image data stored in the image data area (202), in the order the plurality of image data are stored. A feature amount data area (203) stores feature amount data obtained from the images stored in the image data area (202). Furthermore, an image information area (201) stores header information including information indicating the start position of each area.