Abstract:
A moveable media dam comprises a media dam rotatably connected to a dam shaft, the dam shaft extending from a lever. An arm has at least one camming member and the lever is engaged by the at least one camming member. The arm operably engages a gear train and further comprises an arm ring disposed over a gear of the gear train. The media dam is moveable between a first and second position. The device functions to clear a media feed zone and align leading edges of media sheets in order to inhibit multi-sheet feeds.
Abstract:
A small or special media guide-in tray including a media tray, an aperture disposed in the media tray, first and second opposed guide arms extending through the aperture and biased to a first position. The first and second opposed guide arms are pivotally mounted and are synchronously movable when small media is inserted. The opposed guide arms and biasing are used to automatically center the small media as it is inserted between the guide arms. The guide-in tray may be utilized with media handling devices having an L-path media feed wherein the guide-in media tray is incorporated in an input tray or in a C-path media feed wherein the guide-in media tray is incorporated in an exit tray.
Abstract:
Drag from media sensor (80) of a printer is eliminated by it being pivoted through a slip connection off of pivoted media feed system (19) to briefly contact papers. The pivoted media feed is then moved in reverse a limited amount at which a rotatably biased member (94) moves ledge (94a) of the member to face abutment surface (92a) of the media sensor. Media feed system 19 is then moved back to drive media while the media sensor is blocked from movement and the slip connection simply slips. After the media is fed, the media feed system is moved away a longer amount while the media sensor is blocked against for the same movement by an abutment (110) in the printer. The media feed system after the longer movement moves a lever (94f) of the biased member and rotates the ledge to free the media sensor to again move to the media.
Abstract:
A speed mode for a printer (1) which has a pivotally mounted autocompensating system (19) mounted at an intermediate position in paper guide (17). That system (19) is driven by a motor (40) through a slip drive (70, 72, 74). The motor also drives paper feed system (15). When the motor turns in a direction to feed by system (15), the intermediate system is moved away from the paper guide. In basic operation, when a sheet (5) reaches a position to be fed by the intermediate system, the motor is reversed, and the intermediate system pivots against the paper for moving it further through the paper guide. In the speed mode the intermediate system is not employed and all of the feed is by the system at the tray. Since this will not feed shorter sheets, preferably the speed mode must be positively invoked, as by operator input or definitive information in the header of a print job.
Abstract:
An imaging apparatus includes a printing mechanism having a media path. A print media source is provided for supplying a sheet of print media to the printing mechanism. A drive unit is provided, with a drive shaft coupled to the drive unit. A media sensor device is mounted to the drive shaft, wherein as the drive shaft is rotated in a first direction the media sensor device is moved from a first position that is out of the media path to a second position that is in the media path for sensing the sheet of print media. As the drive shaft is rotated in a second direction opposite to the first direction the media sensor device is moved from the second position that is in the media path for sensing the sheet of print media to the first position that is out of the media path.
Abstract:
A media pick method includes receiving an initiation signal, causing a media pick system to complete a series of wait, forward move and reverse move pick actions, and causing the media pick system to complete the last of the series of forward move pick actions in conjunction with a feed roll motor's de-skew move. Reversing a direction of a pick motor enables a gear train to reset and allow momentum to build before engaging the paper on a second forward pick try. Repeats of pick pulses applies a proper balance of shear and normal forces on media.
Abstract:
An open jam-door sensor having a peripheral device such as a printer including a substantially C-shaped feed path, the C-shaped feed path defining an inner guide and an outer guide, the outer guide being connected to the peripheral device. A media sensor for detecting type of media in the device is disposed on one of said guide opposite a reflective portion disposed on the other of said guides. The media sensor also being used to detect when the outer guide is in an open position and causing a processor to inhibit device operations, such as printing.
Abstract:
An environmentally friendly apparatus to attract and kill insect pests is described. The apparatus includes two panels, which could be made from one folded sheet, coupled together to form a housing for a pad containing an insect attractant, e.g. a pheromone. The outer surface of the housing has a plurality of louvered vents for dispersion of the scent from the attractant to the environment thus attracting the insect pest. The apparatus is configured to be capable of being on a fruit tree.
Abstract:
Methods, apparatus and systems for characterizing changes in at least one physical property of soft tissue. A series of acoustic pulses is generated and directed into the soft tissue such that at least one of the pulses is of sufficiently high intensity to induce physical displacement of the tissue. Waves reflected off the tissue, or a flexible member that moves with the tissue, are received and measured to estimate at least one characteristic of the physical displacement induced thereby. Repetition of the generating, receiving and estimating steps provides characterization of the at least one physical property over time. Methods, apparatus and systems for characterizing at least one physical property of blood, by generating a series of acoustic pulses and directing the series of pulses into the blood such that at least one of the pulses is of sufficiently high intensity to induce physical displacement of the blood. Acoustic pulses and/or optical waves reflected from the blood, or a flexible member in contact with the blood that moves with the blood, are received and measured to estimate at least one characteristic of the physical displacement induced thereby.
Abstract:
The present invention relates to structural studies of the functional insect ecdysone receptor. More particularly, the invention relates to the crystal structure of the whitefly ecdysone receptor ligand-binding domain, specifically that of Bemisia tabaci, and uses of the crystal and related structural information to select and screen for compounds that interact with the receptor.