摘要:
Soft decision decoding of a codeword of a Reed-Muller (RM) code by selecting an optimal decomposition variable i using a likelihood calculation. A code RM(r, m) is expressed as {(u, uv)|uεRM(r, m−1) and vεRM(r−1, m−1)}, where uv denotes a component-wise multiplication of u and v, and (u, uv)=(r1, r2). A receive codeword is separated into r1=u and r2=uv based on the optimal decomposition variable, and r2 is decoded according to the optimal decomposition variable, using a RM(r−1, m−1) decoder to obtain a decoded v and a first set of decoded bits. The decoded v is combined with r1 using (r1+r2v)/2, and (r1+r2v)/2 is decoded using a RM(r, m−1) decoder to obtain a decoded u and a second set of decoded bits.
摘要:
In optical networks new links are added between nodes over time to satisfy the increasing traffic demands of the network. Existing links are normally not changed, resulting in a network that does not have the lowest energy consumption. A method provides a way to reduce the energy consumption of the overall network while supporting the required traffic demands at all times. The network includes a multiple source nodes, and multiple destination nodes. The network is represented by a graph of nodes connected by edges, wherein each node represents an optical network element and each edge represents a path connecting two optical network elements. Each edge is labeled with a demand. The non-bridge edge with a lowest demand is removed from the graph, and the lowest demand is added to the non-bridge edge with a highest demand. These steps are repeated until a termination condition is reached.
摘要:
In optical networks new links are added between nodes over time to satisfy the increasing traffic demands of the network. Existing links are normally not changed, resulting in a network that does not have the lowest energy consumption. A method provides a way to reduce the energy consumption of the overall network while supporting the required traffic demands at all times. The network includes a multiple source nodes, and multiple destination nodes. The network is represented by a graph of nodes connected by edges, wherein each node represents an optical network element and each edge represents a path connecting two optical network elements. Each edge is labeled with a demand. The non-bridge edge with a lowest demand is removed from the graph, and the lowest demand is added to the non-bridge edge with a highest demand. These steps are repeated until a termination condition is reached.
摘要:
Soft decision decoding of a codeword of a Reed-Muller (RM) code byselecting an optimal decomposition variable i using a likelihood calculation. A code RM(r, m) is expressed as {(u, uv)|uεRM(r, m−1) and vεRM(r−1, m−1)) where uv denotes a component-wise multiplication of u and v, and (u, uv)=(r1, r2). A receive codeword is separated into r1=u and r2=uv based on the optimal decomposition variable, and r2 is decoded according to the optimal decomposition variable, using a RM(r−1, m−1) decoder to obtain a decoded v and a first set of decoded bits. The decoded v is combined with r1 using (r1+r2v)/2, and(r1+r2V)/2 is decoded using a RM(r, m−1) decoder to obtain a decoded u and a second set of decoded bits.
摘要:
An optical network includes multiple source, cross connect, and destination nodes. A traffic demand matrix is constructed for each possible pair of combinations of the source nodes and the destination nodes. A first energy reduction metric is determined for creating the bypass between the source node and any XC node based on the traffic demand matrix, and a second energy reduction metric is determined for creating the bypass between any XC node and the destination node using the traffic demand matrix. Then, a bypass that terminates at one of the XC nodes that has a largest energy reduction metric is created.
摘要:
Optical dispersion imposed on a communications signal conveyed through an optical communications system is compensated by modulating the communications signal in the electrical domain. A compensation function is determined that substantially mitigates the chromatic dispersion. The communications signal is then modulated in the electrical domain using the compensation function. Electrical domain compensation can be implemented in either the transmitter or the receiver end of the communications system. In preferred embodiments, compensation is implemented in the transmitter, using a look-up-table and digital-to-analog converter to generate an electrical predistorted signal. The electrical predistorted signal is then used to modulate an optical source to generate a corresponding predistorted optical signal for transmission through the optical communications system.
摘要:
A method and an optical receiver compensates for an error in a phase of an optical signal in a receiver. The signal includes blocks of symbols in a sequence. Each block is decoded based on a partially phase compensated symbols, and an average phase error for the block is estimated. Forward phase compensation and backward phase compensation is performed on the block based on the average phase error, and the decoding, estimating, performing is iterated until a termination condition is satisfied to produce a phase compensated block.
摘要:
Optical dispersion imposed on a communications signal conveyed through an optical communications system is compensated by modulating the communications signal in the electrical domain. A compensation function is determined that substantially mitigates the chromatic dispersion. The communications signal is then modulated in the electrical domain using the compensation function. In preferred embodiments, compensation is implemented in the transmitter, using a look-up-table and digital-to-analog converter to generate an electrical predistorted signal. The electrical predistorted signal is then used to modulate an optical source to generate a corresponding predistorted optical signal for transmission through the optical communications system.
摘要:
Optical dispersion imposed on a communications signal conveyed through an optical communications system is compensated by modulating the communications signal in the electrical domain. A compensation function is determined that substantially mitigates the chromatic dispersion. The communications signal is then modulated in the electrical domain using the compensation function. In preferred embodiments, compensation is implemented in the transmitter, using a look-up-table and digital-to-analog converter to generate an electrical predistorted signal. The electrical predistorted signal is then used to modulate an optical source to generate a corresponding predistorted optical signal for transmission through the optical communications system.
摘要:
A method equalizes and decodes a received signal including a sequence of symbols. Subsequences of the signal are selected, wherein the subsequences are overlapping and time shifted. For each subsequence, statistics of the channel corresponding to a pattern in the subsequence are selected, wherein the statistics include high-order statistics. A transmitted signal corresponding to the received signal is then estimated based on the statistics.