摘要:
For a call flow to perform position determination, a network sends to a user equipment (UE) an indication (e.g., a request for permission) to perform a position fix for the UE. The UE responds by sending to the network an acknowledgment (e.g., a grant of permission) to perform the position fix. The UE selectively sends a position estimate for itself to the network, typically along with the acknowledgment. The network may initiate location processing if (1) a location estimate is not received from the UE or (2) a location estimate is received from the UE but the network decides not to use this location estimate. In this case, the network and the UE perform location processing to obtain a position fix for the UE. However, if a location estimate is received from the UE and the network decides to use the location estimate, then the location processing is bypassed or short circuited.
摘要:
A user equipment (UE) communicating with a radio access network (RAN) sends to a network entity (e.g., an MSC/SGSN) a request for periodic reporting of the UE location to a client entity. After the request is approved, the MSC/SGSN sends to the RAN signaling to initiate periodic location reporting for the UE. The RAN may request a positioning center (e.g., a SAS) to send assistance data to the UE. The RAN may coordinate and control the periodic location reporting or may pass the control over to the positioning center. For each location reporting, the UE sends location information (e.g., measurements made by the UE or a location estimate computed by the UE) to the RAN. The SAS computes a location estimate if the UE sends measurements. The RAN then sends the location estimate for the UE to the MSC/SGSN, which forwards the location estimate toward the client entity.
摘要:
A user equipment (UE) sends to a serving network a request for periodic reporting of the UE location to a client entity, periodic location information, a request to use GMLC short circuit, and/or a request to use MO-LR short circuit. Various network entities may accept or reject each of the UE requests. For each location reporting event, the UE may send to the serving network its location estimate (e.g., if available and if MO-LR short circuit is allowed) and an address of a requesting GMLC (e.g., if GMLC short circuit is allowed). The network bypasses location processing if the location estimate is selected for use. The serving network may send the location estimate directly to the R-GMLC and bypass a visiting GMLC and a home GMLC, e.g., using the address provided by the UE. The GMLC short circuit and MO-LR short circuit save system resources and shorten response time.
摘要:
Techniques for supporting periodic and other location services with Secure User Plane Location (SUPL) and other location architectures are described. The techniques can provide position estimates for a SUPL enabled terminal (SET) to a SUPL agent periodically and/or based on trigger events. A Home SUPL Location Platform (H-SLP) receives from the SUPL agent a request for position estimates for the SET. The H-SLP starts a SUPL location session with the SET. For each of at least one reporting event during the location session, the H-SLP obtains a position estimate for the SET and sends the position estimate to the SUPL agent. The position estimate may be derived by the SET and sent to the H-SLP. Alternatively, the position estimate may be derived by the H-SLP based on measurements from the SET.
摘要:
Techniques to support emergency circuit-mode calls are described. The techniques may be used for various 3GPP and 3GPP2 networks, various location architectures, and various types of User Equipment (UE). A UE establishes a circuit-mode call with a wireless network for emergency services. The UE interacts with a location server indicated by the wireless network. The UE performs user plane location with the location server during the circuit-mode call to obtain a position estimate for the UE. The UE communicates with a PSAP, which may be selected based on the position estimate, for the emergency circuit-mode call. The UE may perform positioning with the location server to obtain an updated position estimate for the UE, e.g., whenever requested by the PSAP.
摘要:
Techniques to support emergency voice-over-Internet Protocol (VoIP) calls are described. The techniques may be used for various 3GPP and 3GPP2 networks, various location architectures, and various types of User Equipment (UE). A UE communicates with a visited network to send a request to establish an emergency VoIP call. The UE interacts with a location server instructed by the visited network to obtain a first position estimate for the UE. The UE performs call setup via the visited network to establish the emergency VoIP call with a PSAP, which may be selected based on the first position estimate. The UE may thereafter perform positioning with the location server to obtain an updated position estimate for the UE, e.g., if requested by the PSAP.
摘要:
Techniques for supporting periodic and other location services with Secure User Plane Location (SUPL) and other location architectures are described. The techniques can provide position estimates for a SUPL enabled terminal (SET) to a SUPL agent periodically and/or based on trigger events. A Home SUPL Location Platform (H-SLP) receives from the SUPL agent a request for position estimates for the SET. The H-SLP starts a SUPL location session with the SET. For each of at least one reporting event during the location session, the H-SLP obtains a position estimate for the SET and sends the position estimate to the SUPL agent. The position estimate may be derived by the SET and sent to the H-SLP. Alternatively, the position estimate may be derived by the H-SLP based on measurements from the SET.
摘要:
Techniques for supporting periodic and other location services with Secure User Plane Location (SUPL) and other location architectures are described. The techniques can provide position estimates for a SUPL enabled terminal (SET) to a SUPL agent periodically and/or based on trigger events. A Home SUPL Location Platform (H-SLP) receives from the SUPL agent a request for position estimates for the SET. The H-SLP starts a SUPL location session with the SET. For each of at least one reporting event during the location session, the H-SLP obtains a position estimate for the SET and sends the position estimate to the SUPL agent. The position estimate may be derived by the SET and sent to the H-SLP. Alternatively, the position estimate may be derived by the H-SLP based on measurements from the SET.
摘要:
Techniques for supporting periodic and other location services with Secure User Plane Location (SUPL) and other location architectures are described. The techniques can provide position estimates for a SUPL enabled terminal (SET) to a SUPL agent periodically and/or based on trigger events. A Home SUPL Location Platform (H-SLP) receives from the SUPL agent a request for position estimates for the SET. The H-SLP starts a SUPL location session with the SET. For each of at least one reporting event during the location session, the H-SLP obtains a position estimate for the SET and sends the position estimate to the SUPL agent. The position estimate may be derived by the SET and sent to the H-SLP. Alternatively, the position estimate may be derived by the H-SLP based on measurements from the SET.
摘要:
Techniques for performing registration in parallel with call establishment to reduce delay are described. A user equipment (UE) performs registration with a communication network, e.g., in response to a user placing an emergency call. The UE establishes the call in parallel with performing registration. The UE updates the call with information (e.g., verified UE identity and/or call back information) obtained from the registration by sending the information to a called entity/party such as a Public Safety Answering Point (PSAP) selected for the emergency call. The UE sends a first message to initiate registration, a second message to initiate establishment of the call, and a third message to update the call with the information obtained from the registration. The established call may be associated with the registration based on a common source IP address in the first, second and third messages and common dialogue information in the second and third messages.