Abstract:
The invention relates to a vehicle window consisting of a transparent composite material, wherein the composite material comprises fibers and a matrix material such that the vehicle window is capable of withstanding structural loads occurring in the window region and can substantially provide the window function even in spite of damage to the vehicle window (damage-tolerant), the fibers and the matrix material being transparent and substantially having the same refractive index. The invention proposes vehicle windows which are damage-tolerant, load bearing, cost-saving, easy to handle and require less installation space than conventional vehicle windows.
Abstract:
Disclosed is a reinforcement blank, in particular a curved ring frame segment for fuselage cells of aircraft, comprising a synthetic material that is reinforced by at least one fiber laminate. The fiber laminate includes at least one full-area layer with a first fiber direction and at least one full-area layer with a second fiber direction, wherein at least one further layer with a third fiber direction is arranged in a peripheral area of the fiber laminate. This results in an orientation of the fibers in the individual layers of the fiber laminate used to reinforce the reinforcement beam that is overall suitable for the applied load, so that the reinforcement beam withstands high mechanical loads at a minimum weight.
Abstract:
The invention relates to a belt conveyor comprising a revolving conveyor belt (1, 1′), carrying rollers (2, 2′) which are positioned between the upper strand (3) and the lower strand (4, 4′) of the conveyor belt (1), a drive device and a power-transmitting unit (5, 5′) for moving the conveyor belt (1). Damage to the surface of the conveyor belt of the belt conveyor by the power transmitting device is largely excluded by the fact that for power transmission a pair of elements (6, 6′, 7) is provided for which cooperate in a positive-fit and in that the one element (6, 6′) is assigned to the power-transmitting device (5, 5′) and the other element (7) to the conveyor belt (1).
Abstract:
A non-destructive determination of material characteristics of an aircraft component is provided. To provide a simple determination of material characteristics, which can be implemented economically, it is provided to make available image data of a layer, which can be detected from outside using electromagnetic radiation, of a workpiece to be examined; to detect first areas having a first pixel characteristic using the image data; and to detect second areas having a second pixel characteristic using the image data; the first pixel characteristic being associated with a fiber inlay of a fiber composite layer; and the second pixel characteristic being associated with an at least part-crystalline thermoplastic polymer of the fiber composite layer, which thermoplastic polymer is in a crystalline state; and to determine a relationship of the first areas to the second areas.
Abstract:
A coupling element for connecting stringers in the process of joining two fuselage sections by means of at least one transverse splicing plate, wherein in each case the fuselage sections on the inside comprise a multitude of stringers arranged on fuselage skins, as well as annular frame elements, wherein the coupling element comprises a base flange and a frame element flange, and by way of the coupling element in each case a connection between the opposing stringers, the annular frame element and the fuselage skins or the transverse splicing plate takes place so that the coupling element beyond a connection of the stringer base also supports the connection of stringers on the flank side.
Abstract:
An apparatus for distributing goods delivered on one or more feeding conveyor belts onto two or more removal conveyor belts, wherein the feeding conveyor belts as well as the removal conveyor belts are subdivided into a plurality of individual conveyor belts which are arranged in parallel side by side and are driven jointly. A rotary table having an essentially circular contour and also comprising a plurality of parallel individual conveyor belts which are also allocated to a joint drive is positioned between the feeding and the removal conveyor belts, wherein the feeding and the individual removal conveyor belts each closely reach up to the individual conveyor belts of the rotary table and are, in essence, adjusted in their length to the circular contour of the rotary table
Abstract:
A closed ring fiber reinforced frame structure is produced by first preparing a prepreg. A section of the prepreg is formed into a flange preferably after impregnation by folding the flange section along a folding line. The folding line is formed by securing a deformable or drapable fiber ribbon material, for example by sewing or stitching to a carrier substrate which is preferably also a fiber material. The sewing seam or stitching line becomes the folding line. The ribbon material is so secured to the carrier substrate that the fiber orientation of the ribbon material is uniformly distributed all around a ring component that is formed of the ribbon material on the substrate. The impregnated ring component with its substrate is then cured after the folding of the flange to complete the ring frame structure.
Abstract:
A method for edge sealing a fiber-reinforced component formed from a carbon fiber-reinforced thermoplastic or duroplastic plastic material includes electrostatic coating of at least one section of an edge of the component with a thermoplastic powder so as to form a powder coating; and fusing and cross-linking the powder coating in a furnace so as to create a smooth edge seal.
Abstract:
The invention concerns a shell segment for the purpose of manufacturing a fuselage cell section for a fuselage cell of an aeroplane, with at least one skin field and with a multiplicity of longitudinal stiffeners arranged thereon, in particular stringers, and also at least one transverse stiffening element running transverse to the longitudinal stiffeners, in particular at least one frame.In that the connection of the at least one transverse stiffening element to the at least one skin field is undertaken with at least one connecting bracket wherein the at least one connecting bracket has at least one corrugation, the supporting brackets for purposes of absorbing tilting moments of the frames, in forms of embodiment of shell segments of prior known art, can be omitted. By this means a considerable weight reduction is possible with, at the same time, a reduced production effort.
Abstract:
A method and a device for inspecting the quality of a formed thermoplastic fiber-reinforced plastic component wherein the component is tested by means of a sensor unit with a downstream electronic evaluation unit for analysis of the measuring result acquired by sensor technology by means of sample comparison, wherein by means of the optical sensor unit the surface roughness of the plastic component is measured after forming, which surface roughness is analyzed by means of the evaluation unit by a comparison with a stored reference pattern in such a manner that increased surface roughness is interpreted as increased internal materials porosity.