Abstract:
A generator system includes a generator controller for monitoring the operation of generator cable. The generator controller is configured to receive a first signal indicative of a generator output and a first connection of a generator cable and a second signal indicative of a second connection of the generator cable. The generator controller is configured to calculate a characteristic value for the generator cable based on the first signal and the second signal and compare the characteristic value for the generator cable to a threshold value. A generator status message or a generator command is generated in response to the comparison. The characteristic value may be resistance of the generator cable.
Abstract:
Some embodiments relate to a method of adding and shedding loads that are connected to a generator. The method includes determining whether a plurality of loads is being supplied with power by the generator and then determining the total load that the generator is supplying to the plurality of loads. The method further includes determining whether to change a number of the loads in the plurality of loads based on the amount of load L that is being supplied by the generator. The method further includes determining an amount of time T in which to change the number of loads in the plurality of loads based on the amount of load that is being supplied by the generator.
Abstract:
A generator system includes a generator controller for monitoring the operation of generator cable. The generator controller is configured to receive a first signal indicative of a generator output and a first connection of a generator cable and a second signal indicative of a second connection of the generator cable. The generator controller is configured to calculate a characteristic value for the generator cable based on the first signal and the second signal and compare the characteristic value for the generator cable to a threshold value. A generator status message or a generator command is generated in response to the comparison. The characteristic value may be resistance of the generator cable.
Abstract:
A control circuit for a dual fuel generator includes a primary fuel valve to control the supply of a primary fuel, a secondary fuel valve to control the supply of a secondary fuel, a primary fuel pressure switch to detect the primary fuel, a secondary fuel pressure switch to detect the secondary fuel, and a controller. The controller is configured to receive a primary signal for availability of the primary fuel from the primary fuel pressure switch and a secondary signal for availability of the secondary fuel from the secondary and operate the primary fuel valve and the secondary fuel valve in response to the primary signal and the secondary signal. When the secondary fuel valve is open so that the secondary fuel is provided to the dual fuel generator, the control circuit is configured to ground the primary signal by connecting the primary fuel pressure switch to ground.
Abstract:
A control circuit for a dual fuel generator includes a primary fuel valve to control the supply of a primary fuel, a secondary fuel valve to control the supply of a secondary fuel, a primary fuel pressure switch to detect the primary fuel, a secondary fuel pressure switch to detect the secondary fuel, and a controller. The controller is configured to receive a primary signal for availability of the primary fuel from the primary fuel pressure switch and a secondary signal for availability of the secondary fuel from the secondary and operate the primary fuel valve and the secondary fuel valve in response to the primary signal and the secondary signal. When the secondary fuel valve is open so that the secondary fuel is provided to the dual fuel generator, the control circuit is configured to ground the primary signal by connecting the primary fuel pressure switch to ground.
Abstract:
Some embodiments relate to a method of adding and shedding loads that are connected to a generator. The method includes determining whether a plurality of loads is being supplied with power by the generator and then determining the total load that the generator is supplying to the plurality of loads. The method further includes determining whether to change a number of the loads in the plurality of loads based on the amount of load L that is being supplied by the generator. The method further includes determining an amount of time T in which to change the number of loads in the plurality of loads based on the amount of load that is being supplied by the generator.
Abstract:
Some embodiments relate to a power management system. The power management system includes a generator that provides a voltage output to a bus. The bus is adapted to be connected to a load. The power management system further includes a battery charger that is adapted to charge a battery. A generator controller operates the generator and also adjusts operating conditions of the battery charger. In some embodiments, the generator includes an internal combustion engine that drives an alternator. Embodiments are contemplated where the battery charger is adapted to receive power from a primary power source. As an example, the primary power source may be utility power or some other form of generator power.
Abstract:
Some embodiments relate to a power management system. The power management system includes a generator that provides a voltage output to a bus. The bus is adapted to be connected to a load. The power management system further includes a battery charger that is adapted to charge a battery. A generator controller operates the generator and also adjusts operating conditions of the battery charger. In some embodiments, the generator includes an internal combustion engine that drives an alternator. Embodiments are contemplated where the battery charger is adapted to receive power from a primary power source. As an example, the primary power source may be utility power or some other form of generator power.
Abstract:
Some embodiments relate to a power generation system. The power generation system includes a first generator and a first battery charger. The first battery charger is adapted to charge a first battery and a second battery. The first battery and the second battery are each adapted to provide power to start the first generator. The power generation system further includes a controller that determines a state of charge for each of the first battery and the second battery. Based on the state of charge for each of the first battery and the second battery, the controller determines which of the first battery and the second battery receives charging current from the first battery charger.
Abstract:
Some embodiments relate to a power generation system. The power generation system includes a first generator and a first battery charger. The first battery charger is adapted to charge a first battery and a second battery. The first battery and the second battery are each adapted to provide power to start the first generator. The power generation system further includes a controller that determines a state of charge for each of the first battery and the second battery. Based on the state of charge for each of the first battery and the second battery, the controller determines which of the first battery and the second battery receives charging current from the first battery charger.