Abstract:
An electrostatic charge image developing toner includes toner particles including a particulate toner matrix and an external additive adhering to a surface of the particulate toner matrix. The particulate toner matrix includes a crystalline polyester resin. The external additive includes silica particles. The silica particles are secondary particles including primary particles having a diameter in the range of 30 to 90 nm. The secondary particles have an average circularity in the range of 0.25 to 0.50. The secondary particles have an average aspect ratio of 3.0 or more.
Abstract:
The toner of the present invention contains: a toner base particle, and a silica particle and a fatty acid metal salt particle adhering to a surface of the toner base particle. The toner base particle contains a crystalline polyester resin and an amorphous polyester resin. The toner particle has an average circularity of 0.945 to 0.965. The silica particle has a volume average particle size of 70 to 300 nm, and has an average circularity of 0.5 to 0.9. The fatty acid metal salt particle has a median diameter based on a volume of 0.50 to 2.00 μm.
Abstract:
Provided is a two-component developer for developing an electrostatic latent image capable of stably printing a high-quality image.Disclosed is a two-component developer for developing an electrostatic latent image which contains toner particles and carrier particles having a core particle surface coated with a coating resin, in which a volume average particle size of the toner particles, an average magnetization of the core particle per one particle in an applied magnetic field of 1 kilooersted, a volume average particle size of the carrier particles, a volume resistivity, and an area ratio of the core particles exposed on the carrier particle surface are in a specific range.
Abstract:
A two-component developer of the present invention contains toner particles and carrier particles. The number-average particle diameter of the toner particles ranges from 3.5 to 5.0 μm. The volume-average particle diameter of the carrier particles MDc is within a specific range in accordance with the percentage of relatively large toner particles having relatively low circularity.
Abstract:
A touch panel sharing support apparatus applicable for sharing a touch panel by a first system and a second system independent of each other, includes: a storage that stores definition data defining a first region for the first system and a second region for the second system, on a touch surface of the touch panel; a hardware processor that discriminates which of the first region and the second region a touched position on the touch surface belongs to on the basis of the definition data; and a transmitter that transmits operation data concerning operation onto the touch surface to the first system in a case where the hardware processor discriminates that the position belongs to the first region and transmits the operation data to the second system in a case where the hardware processor discriminates that the position belongs to the second region.
Abstract:
A toner for developing electrostatic images, including toner particles containing an external additive on surfaces of toner matrix particles. The external additive contains at least a lanthanum-containing titanate compound.
Abstract:
Provided is a carrier for electrostatic charge image development which provides a two-component developer having a high electric charge amount, a suppressed variation in an electric charge amount caused by an environmental change, and excellent durability, even if a low temperature fixable toner is used.A carrier for electrostatic charge image development of the present invention includes: carrier particles in which a core particle surface is coated with a coating material containing a resin, wherein the coating material contains phosphorus element, and the resin contains structural units derived from an alicyclic (meth)acrylic acid ester compound.
Abstract:
An electrostatic latent image developing toner of the present invention includes toner base particles and particles containing a fatty acid metal salt. The toner base particles contain a crystalline resin containing a segment of a first resin and a segment of a second resin chemically bonded to each other and an amorphous resin containing at least the second resin. The crystalline resin is a hybrid crystalline polyester resin. The first resin is a crystalline polyester resin. The second resin is an amorphous resin. The volume-based median diameter (Da) of the toner base particles and the volume-based median diameter (Db) of the particles containing the fatty acid metal salt satisfy the relations represented by Expressions (1) and (2) below: 0.5 μm≦Db≦2.0 μm Expression (1) 0.1 Db/Da≦0.5. Expression (2)
Abstract:
To provide a two-component developer for electrostatic charge image development, the two-component developer enabling a high image quality to be kept and enabling the occurrence of fogging to be suppressed even in continuous printing of an image high in coverage rate. The two-component developer for electrostatic charge image development includes a toner particle including a toner base particle and an external additive disposed on the surface of the toner base particle, and a carrier particle including a core material particle and a covering section disposed on the surface of the core material particle, wherein the external additive includes an alumina particle, and the percentage of exposed area of the core material particle is 4.0% or more and 15.0% or less.
Abstract:
Provided is a method for producing a carrier for developing an electrostatic latent image, the carrier including carrier particles each including a core particle with a surface coated with a coating material including a resin, and the method including the steps of: a) obtaining first coating resin particles by polymerizing an alicyclic methacrylate monomer using, as a polymerization initiator, an azo compound having a nitrogen atom-containing substituent; b) obtaining second coating resin particles by polymerizing an alicyclic methacrylate monomer using a persulfate as a polymerization initiator; and c) forming carrier particles by coating surfaces of core particles with a coating material obtained by mixing at least the first and second coating resin particles.