摘要:
The present invention relates to a method for preparing a nano-titanate, a nano-titanic acid and a nano-TiO2 containing doping E or embedding E nanoparticles, and the use thereof. By using an E-doped Ti-T intermetallic compound as a titanium source, and reacting it with alkaline solution at atmospheric pressure and near its boiling-point temperature, an E-doped titanate nanofilm is prepared with high efficiency and in a short time. Through acid treatment and (or) heat treatment, a titanate nanofilm containing embedding E nanoparticles, an E-doped titanic acid nanofilm, and a titanic acid nanofilm and a TiO2 flake powder containing embedding E nanoparticles can be further prepared. Through a subsequent reaction at high temperature and pressure, the preparation of an E-doped titanate nanotubes and titanic acid nanotubes, and titanic acid nanotubes and TiO2 nanotubes/nanorods containing embedding E nanoparticles can be achieved in high efficiency and low-cost.
摘要:
The present invention relates to a material of the formula SnTiO3 having a crystal structure comprised of layers, wherein the layers comprise Sn(II) ions, Ti(IV) ions and edge-sharing O6-octahedra, the edge-sharing O6-octahedra form a sub-layer, the Ti(IV) ions are located within ⅔ of the edge-sharing O6-octahedra, thus forming edge-sharing TiO6-octahedra, the edge-sharing TiO6-octahedra form a honeycomb structure within the sub-layer, the honeycomb structure comprising hexagons with Ti(IV)-vacancies within the hexagons, the Sn(II) ions are located above and below the Ti(IV)-vacancies with respect to the sub-layer, the Ti(IV) ions are optionally substituted with M, M is one or more elements selected from Group 4 and Group 14 elements, and the crystal structure satisfies at least one of the following features (i) and (ii): (i) the Sn(II) ions have a tetrahedral coordination sphere involving three O ions of the layer and the electron lone pair of the Sn(II) ions which is situated at an apical position relative to the three O ions of the layer, (ii) the layers are stacked so that each layer is translated relative to each adjacent layer by a stacking vector S1 or a stacking vector S2, the centers of adjacent hexagons form a parallelogram with a side having a length x and side having a length y, the stacking vector S1 is a combined translation along the side having the length x by ⅔ x and along the side having a lengthy by ⅓ y, the stacking vector S2 is a combined translation along the side having the length x by ⅓ x and along the side having a lengthy by ⅔ y, and the crystal structure comprises layers translated relative to adjacent layers by the stacking vector S1 and layers translated relative to adjacent layers by the stacking vector S2. The present invention is further directed to a material of the formula SnTiO3 having a tetragonal perovskite-type crystal structure, a method for the preparation of SnTiO3, a device comprising a ferroelectric material and a use of the material of the formula SnTiO3 in a ferroelectric element.
摘要:
Provided is a method for preparing rutile from acid-soluble titanium slag, including: grinding acid-soluble titanium slag; adding a sodium carbonate modifier, and performing microwave irradiation treatment in a microwave device; adding an ammonium bifluoride additive; and performing acid purification and calcination to obtain rutile. By means of a microwave heating mode, the equipment investment needed by the method is low, and the energy consumption is low. The purity of artificial rutile is more than 91%, byproducts are fewer, and the environmental pollution is low.
摘要:
To provide a PBNZT ferroelectric film capable of preventing sufficiently oxygen ion deficiency. The PBNZT ferroelectric film according to an embodiment of the present invention is a ferroelectric film including a perovskite-structured ferroelectric substance represented by ABO3, wherein the perovskite-structured ferroelectric substance is a PZT-based ferroelectric substance containing Pb2+ as A-site ions and containing Zr4+ and Ti4+ as B-site ions, and the A-site contains Bi3+ as A-site compensation ions and the B-site contains Nb5+ as B-site compensation ions.
摘要:
According to one embodiment, there is provided an active material that includes a composite oxide having a crystal structure belonging to a space group Fmmm. The composite oxide is represented by the formula: Li2+xNa2-yMzTi6O14+δ. Herein, M includes at least one of Mg, Ca, Sr, and Ba. x is within a range of 0≤x≤6. y is within a range of 0
摘要:
An iron-based oxide magnetic particle powder has a narrow particle size distribution a small content of fine particles that do not contribute to magnetic recording characteristics, and a narrow coercive force distribution, to enhance magnetic recording medium density. Neutralizing an aqueous solution containing a trivalent iron ion and an ion of the metal substituting a part of the Fe sites by adding an alkali to make pH of 1.5 or more and 2.5 or less, adding a hydroxycarboxylic acid, and further neutralizing by adding an alkali to make pH of 8.0 or more and 9.0 or less are performed at 5° C. or more and 25° C. or less. A formed iron oxyhydroxide precipitate containing the substituting metal element is rinsed with water, then coated with silicon oxide, and then heated thereby providing e-type iron-based oxide magnetic particle powder. The rinsed precipitate may be subjected to a hydrothermal treatment.
摘要:
Disclosed herein are methods for preparing a titanate compound powder comprising titanate compound particles having a controlled particle size and/or particle size distribution. The methods include mixing at least one first inorganic compound chosen from sources of a first metal or metal oxide, at least one second inorganic compound chosen from sources of titania, and at least one binder to form a mixture; calcining the mixture to form a polycrystalline material comprising a plurality of titanate compound grains and a plurality of micro-cracks; and breaking the polycrystalline material along at least a portion of the microcracks. Also disclosed are titanate compound powders having a controlled particle size distribution, ceramic batch compositions comprising the powders, and ceramic articles prepared from the batch compositions.
摘要:
According to one embodiment, there is provided an active material. The active material includes particles of a Na-containing niobium titanium composite oxide having an orthorhombic crystal structure. An intensity ratio I1/I2 is within a range of 0.12≦I1/I2≦0.25 in an X-ray diffraction pattern of the active material, according to X-ray diffraction measurement using a Cu-Kα ray. I1 is a peak intensity of a peak P1 that is present within a range where 2θ is 27° to 28° in the X-ray diffraction pattern of the active material. I2 is a peak intensity of a peak P2 that is present within a range where 2θ is 23° to 24° in the X-ray diffraction pattern of the active material.
摘要:
In general, according to one embodiment, there is provided an active material. The active material contains a composite oxide having an orthorhombic crystal structure. The composite oxide is represented by a general formula of Li2+wNa2−xM1yTi6−zM2zO14+δ. In the general formula, the M1 is at least one selected from the group consisting of Cs and K; the M2 is at least one selected from the group consisting of Zr, Sn, V, Nb, Ta, Mo, W, Fe, Co, Mn, and Al; and w is within a range of 0≦w≦4, x is within a range of 0
摘要:
Provided is a lepidocrocite-type titanate capable of suppressing the interference with the curing of a thermosetting resin and a resin composition having excellent wear resistance. A lepidocrocite-type titanate has a layered structure formed by chains of TiO6 octahedra, wherein part of Ti sites is substituted with ions of two or more metals selected from the group consisting of Li, Mg, Zn, Ni, Cu, Fe, Al, Ga, and Mn and runs of at least one metal selected from alkali metals other than Li are contained between layers of the layered structure.