摘要:
A process for producing a casting core which is used for forming within a casting a cavity intended for cooling purposes, through which a cooling medium can be conducted, the casting core having surface regions in which there is incorporated in a specifically selective manner a surface roughness which transfers itself during the casting operation to surface regions enclosing the cavity and leads to an increase in the heat transfer between the cooling medium and the casting.
摘要:
A cooling passage of a component subjected to high thermal loading, which is formed as a cavity (2, 20, 30), running in a longitudinal direction (L) and curved orthogonally to the longitudinal direction (L), between a first wall (5) and a second wall (6), which in each case are connected to one another in a laterally adjacent manner, which has ribs (7, 17, 27), which are arranged on the first wall (5) and the second wall (6) such that they alternate in a longitudinal direction (L) and are staggered relative one another and, at least in sections, assume a non-orthogonal angle relative to a projected center axis (10′), and through which a cooling fluid (K) can flow in a longitudinal direction (L), in which case, when the profile of the cavity (2, 20, 30) is curved orthogonally to the longitudinal direction (L), the ribs (7, 17, 27) are formed in such a way that, in each case locally with regard to the adjacent rib of the opposite wall, they maintain a distance (a) which is half a respective local rib spacing (p). It is thereby possible to even out the heat transfer at a curved passage profile.
摘要:
The arrangements according to the invention and the methods according to the invention serve to seal a gap 20 against a primary fluid 10 by means of a secondary fluid 11 in a fluid-dynamic and non-contact manner, which primary fluid 10 flows over the gap 20. The secondary fluid 11 forms a preferably rotating vortex flow 13 in the gap in at least one or more sections along the gap. The flow of the secondary fluid 11 is preferably guided in a chamber 26, which is arranged in the gap 20. The chamber 26 is designed as a rotary chamber along the entire gap 20 or also as a local chamber 226 extending only locally along the gap. The secondary fluid 11 may be supplied via supply conduits 40, in which the gap 120 itself may be utilized for supplying secondary fluid 115 to the chamber 126. As further elements for the guidance of the vortex flow, guiding lips 50, undercuts of the chamber contour 351, and guiding elements 160 may be arranged in the gap. Furthermore, a mechanical seal 370 arranged in the gap on that side of the chamber which is remote from the primary flow may additionally seal the gap 320 mechanically. A typical embodiment of the invention is shown in FIG. 1. A second arrangement according to the invention relates to a slalom chamber 690, which is arranged in S-shaped undulations along the gap 620.
摘要:
Turbomachine, in particular a compressor of a gas turbine, having rotor blades (11) and guide vanes (12), in which individual or all guide vanes (12) are configured as cooled vanes. The cooled vanes (12) have air guidance ducts (13) which emerge into outlet openings (14) in the region of the vane tips (15). Cooling air (K) is ejected through the outlet openings (14) and impinges at high velocity onto a rotor shaft (18). The cooling effect which can be achieved by this means is optimal and, in addition, leads to a raising of the compressor efficiency and the surge line.
摘要:
A method of forming a curved cooling channel into a gas turbine component such as a turbine blade uses an electrode in the form of a helix. The electrode is driven to rotate around the central rotational axis of the helix and axially along the central rotational axis. A turbine blade for a gas turbine component is provided with at least one helical cooling channel.
摘要:
A cooling arrangement for blades of a gas turbine or the like, in each case the blades being built up from a suction-side wall and a pressure-side wall which are connected, to form a cavity, via a leading edge, a trailing edge, a blade tip and a blade root, and a flow path, through which a cooling medium, in particular steam, is capable of flowing, being integrated in the cavity, and in which the flow paths in each case of two or more adjacent blades are connected to one another in such a way that a continuous cooling duct sealed off relative to the hot-gas stream is formed. It thus becomes possible to increase cooling efficiency by better utilization of the cooling medium and at the same time to reduce the outlay in terms of construction.
摘要:
In an air-cooled turbine blade which, at the blade tip, has a shroud-band element extending transversely to the longitudinal axis of the blade, a plurality of cooling bores passing through the shroud-band element for the purpose of cooling, which cooling bores are connected on the inlet side to at least one cooling-air passage running through the turbine blade to the blade tip and open on the outlet side into the exterior space surrounding the turbine blade, improved and assured cooling is achieved owing to the fact that the cooling bores run from inside to outside in the shroud-band element at least approximately parallel to the direction of movement of the blade and in each case open upstream of the outer margin of the shroud-band element into a surface recess open toward the exterior space. The top side of the shroud band is preferable provided with at least two ribs and, which run in parallel and, in interaction with the opposite casing wall, form a cavity, into which the cooling air discharging from the cooling bores flows.
摘要:
A cooled vane for a gas turbine or similar device including a vane blade constructed of a suction side wall and a pressure side wall that are connected via a leading edge and a trailing edge with each other, which has an essentially radially extending cavity through which a cooling medium is capable of flowing. The vane blade has multiple cooling channels that, starting from the cavity, extend through a vane section adjoining the trailing edge and formed by sections of the suction side wall and the pressure side wall, and end at the trailing edge. A first row of cooling channels is associated with the suction side (SS) of the vane blade, and a second row of cooling channels is associated with the pressure side (DS) of the vane blade. The cooled vane has improved cooling efficiency and can be produced entirely with a casting process while complying with basic geometric conditions.
摘要:
A device separates foreign particles from cooling air fed to turbine rotor blades. The cooling air is fed directly or indirectly via stationary nozzle units to an annular space between wall parts of a turbine stator and rotating wheel disk as a cooling-air stream in the circumferential direction. The annular space communicates with ducts, arranged in the disk, for feeding the cooling air into the blades. A diverter unit is provided inside the annular space or so as to delimit the annular space on one side, so cooling air emerging from the nozzle units, before entering the ducts, is diverted on one side and foreign particles are centrifugally thrown into a radially outer part of the annular space and separated therefrom with a barrier-air fraction. The diverter unit has a surface region on which the stream impinges so it can be diverted radially outward through an angle greater than 90°.
摘要:
In an air-cooled turbine blade (10) which has a shroud-band element (11) at the blade tip, the shroud-band element (11) extending transversely to the blade longitudinal axis, hollow spaces (16, 16′, 17, 17′) for cooling being provided in the interior of the shroud-band element (11), which hollow spaces (16, 16′, 17, 17′) are connected on the inlet side to at least one cooling-air passage (18) passing through the turbine blade (10) to the blade tip and open on the outlet side into the exterior space surrounding the turbine blade (10), the hollow spaces (16, 16′, 17, 17′) and the shroud-band element (11) are matched to one another in shape and dimensions in order to reduce the weight of the shroud-band element (11).