摘要:
An alternating-current motor control apparatus includes an inverter unit, a current-command divider, a current controller, a torque-variation calculator, and a phase angle generator. The inverter unit is configured to output a command voltage to an alternating-current motor. The current-command divider is configured to divide a command current amplitude into command current components based on a phase-angle command value that is a sum of the phase angle and an alternating current signal. The current controller is configured to control current to match a motor current flowing through the motor with the command current components. The torque-variation calculator is configured to calculate a motor electric power based on the command voltage and either the motor current or the command current components and to calculate a torque variation based on the motor electric power. The phase angle generator is configured to generate a phase angle based on the torque variation.
摘要:
An alternating-current motor control apparatus includes an inverter unit, a current-command divider, a current controller, a torque-variation calculator, and a phase angle generator. The current-command divider is configured to divide a command current amplitude into command current components based on a phase-angle command value that is a sum of the phase angle and an alternating current signal. The torque-variation calculator is configured to calculate a motor electric power based on the command voltage and either the motor current or the command current components and to calculate a torque variation based on the motor electric power. The phase angle generator is configured to generate a phase angle based on the torque variation.
摘要:
An alternating-current motor control apparatus includes a voltage controller configured to output a command voltage vector so that the command voltage vector is time-averaged for time periods, a square-wave voltage generator configured to control, every time period, amplitudes and phases of voltages to be applied to an alternating-current motor, a current detector configured to detect motor currents at a timing synchronized with periods 1/N-th of the time periods, where N is equal to or larger than one, a coordinate transformation section configured to perform coordinate transformation to transform the motor currents into two-phase currents, an envelope extractor configured to extract two-phase currents as waveforms having amplitudes that periodically change from the two-phase currents, and extract envelopes of the waveforms, and a magnetic-pole-position computing section configured to compute a magnetic-pole position using the envelopes.
摘要:
Provided is a distributed-power-generation system capable of maintaining an operation point and a method of controlling the same. The distributed-power-generation system comprises: a fuel cell producing current and high-temperature gas through an electric chemical reaction of hydrogen and oxygen; a turbine obtaining rotation power using heat produced by the fuel cell; a compressor supplying air to the fuel cell using the rotation power of the turbine; a motor/generator unit acting as a motor using a current supplied from a battery in a starting mode, and as a generator rotating by rotation power of a turbine and generating a current in a generating mode; and an inverter unit supplying a DC power produced by the fuel cell and an AC power produced by the motor/generator unit for a three-phase power system. The method of controlling the distributed-power-generation system comprises: sensing a rotation speed of a rotation axis of the motor/generator unit; comparing the sensed rotation speed and a predefined reference speed; and supplying a current to the motor/generator unit to produce a load in the opposite direction of rotation of the rotation axis or in the same direction.
摘要:
A field orientation control method for an AC motor, which includes assuming an arbitrary axis as an estimated control axis in the synchronously rotating reference frame; injecting a high-frequency fluctuating signal to the estimated control axis; determining the position of a control axis using current, voltage or impedance on the estimated control axis in the synchronously rotating reference frame, generated by the injected high-frequency signal; and determining the position and speed of the rotor based on the control axis thus located. Since this method uses the variation of impedance caused by the induction machine's generation of field and by various shapes, the control performance is more stable than other conventional control methods. This AC motor's control method may be applied to control of torque, speed and position at a low speed where it is difficult to affix a detector and where a highly efficient operation is required.
摘要:
Provided is a distributed-power-generation system capable of maintaining an operation point and a method of controlling the same. The distributed-power-generation system comprises: a fuel cell producing current and high-temperature gas through an electric chemical reaction of hydrogen and oxygen; a turbine obtaining rotation power using heat produced by the fuel cell; a compressor supplying air to the fuel cell using the rotation power of the turbine; a motor/generator unit acting as a motor using a current supplied from a battery in a starting mode, and as a generator rotating by rotation power of a turbine and generating a current in a generating mode; and an inverter unit supplying a DC power produced by the fuel cell and an AC power produced by the motor/generator unit for a three-phase power system. The method of controlling the distributed-power-generation system comprises: sensing a rotation speed of a rotation axis of the motor/generator unit; comparing the sensed rotation speed and a predefined reference speed; and supplying a current to the motor/generator unit to produce a load in the opposite direction of rotation of the rotation axis or in the same direction.
摘要:
Provided is a distributed-power-generation system capable of maintaining an operation point and a method of controlling the same. The distributed-power-generation system comprises: a fuel cell producing current and high-temperature gas through an electric chemical reaction of hydrogen and oxygen; a turbine obtaining rotation power using heat produced by the fuel cell; a compressor supplying air to the fuel cell using the rotation power of the turbine; a motor/generator unit acting as a motor using a current supplied from a battery in a starting mode, and as a generator rotating by rotation power of a turbine and generating a current in a generating mode; and an inverter unit supplying a DC power produced by the fuel cell and an AC power produced by the motor/generator unit for a three-phase power system. The method of controlling the distributed-power-generation system comprises: sensing a rotation speed of a rotation axis of the motor/generator unit; comparing the sensed rotation speed and a predefined reference speed; and supplying a current to the motor/generator unit to produce a load in the opposite direction of rotation of the rotation axis or in the same direction.
摘要:
Provided is a distributed-power-generation system capable of maintaining an operation point and a method of controlling the same. The distributed-power-generation system comprises: a fuel cell producing current and high-temperature gas through an electric chemical reaction of hydrogen and oxygen; a turbine obtaining rotation power using heat produced by the fuel cell; a compressor supplying air to the fuel cell using the rotation power of the turbine; a motor/generator unit acting as a motor using a current supplied from a battery in a starting mode, and as a generator rotating by rotation power of a turbine and generating a current in a generating mode; and an inverter unit supplying a DC power produced by the fuel cell and an AC power produced by the motor/generator unit for a three-phase power system. The method of controlling the distributed-power-generation system comprises: sensing a rotation speed of a rotation axis of the motor/generator unit; comparing the sensed rotation speed and a predefined reference speed; and supplying a current to the motor/generator unit to produce a load in the opposite direction of rotation of the rotation axis or in the same direction.
摘要:
The present invention is related to the method to find the rotor flux angle from stator voltages and currents by injecting high frequency signal. The injected signal is not rotating one but fluctuating one at a reference frame rotating synchronously to the fundamental stator frequency. The difference of impedances between the flux axis and the quadrature axis at high frequency signal injected on the rotor flux angle is explained by the equivalent circuit equation of the induction machine. The difference is verified by experiments on the test motors at various conditions. The sensorless field orientation control method is proposed and experimental results clarify the satisfactory operation of the method with 150% load torque at zero stator frequency.