摘要:
The simultaneous localization and RF modeling technique pertains to a method of providing simultaneous localization and radio frequency (RF) modeling. In one embodiment, the technique operates in a space with wireless local area network coverage (or other RF transmitters). Users carrying Wi-Fi-enabled devices traverse this space while the mobile devices record the Received Signal Strength (RSS) measurements corresponding to access points (APs) in view at various unknown locations and report these RSS measurements, as well as nay other available location fix to a localization server. A RF modeling algorithm runs on the server and is used to estimate the location of the APs using the recorded RSSI measurements and any other available location information. All of the observations are constrained by the physics of wireless propagation. The technique models these constraints and uses a genetic algorithm to solve them, thereby providing an absolute location of the mobile device.
摘要:
The simultaneous localization and RF modeling technique pertains to a method of providing simultaneous localization and radio frequency (RF) modeling. In one embodiment, the technique operates in a space with wireless local area network coverage (or other RF transmitters). Users carrying Wi-Fi-enabled devices traverse this space while the mobile devices record the Received Signal Strength (RSS) measurements corresponding to access points (APs) in view at various unknown locations and report these RSS measurements, as well as nay other available location fix to a localization server. A RF modeling algorithm runs on the server and is used to estimate the location of the APs using the recorded RSSI measurements and any other available location information. All of the observations are constrained by the physics of wireless propagation. The technique models these constraints and uses a genetic algorithm to solve them, thereby providing an absolute location of the mobile device.
摘要:
One or more techniques and/or systems are disclosed for predicting when a signal handoff may occur from a current base station to a neighboring base station for a mobile device. An indication of signal strength between the mobile device and the current base station and an indication of signal strength between the mobile device and a (e.g., closest) neighboring base station can be monitored by the mobile device. A difference between these signal strength indications can be determined and compared against a threshold (e.g., based upon historical signal handoffs) to predict when and/or where a signal handoff may occur. The predicted signal handoff may be determined by the mobile device and a corresponding notification can be provided so that appropriate action may be taken (e.g., a user may not initiate a call and/or an application may not attempt to communicate data).
摘要:
An intelligent lookup service for a network is provided for clients of a network requesting services of the network that intelligently determines, based on a service requirement of the requested service, optimal service endpoint(s) for providing the requested service. The intelligent lookup service can incorporate predetermined mapping policy and traffic measurements into the determination. In addition, a feedback loop is provided from clients and/or service endpoints to the lookup service concerning measurements about prior connections in the network. The lookup service can include a set of beacons distributed in the network and against which measurements about the network are recorded. A client receives, from the lookup service in response to a request for a network address, a set of candidate service endpoints that pertain to the requested network address and the client connects to one of the candidate service endpoints based on policy or context.
摘要:
An “RFID-Based Inference Platform” provides various techniques for using RFID tags in combination with other enterprise sensors to track users and objects, infer their interactions, and provide these inferences for enabling further applications. Specifically, observations are collected from combinations of RFID tag reads and other enterprise sensors including electronic calendars, user presence identifiers, cardkey access logs, computer logins, etc. Given sufficient observations, the RFID-Based Inference Platform automatically differentiates between tags associated with or affixed to people and tags affixed to objects. The RFID-Based Inference Platform then infers additional information including identities of people, ownership of specific objects, the nature of different “zones” in a workspace (e.g., private office versus conference room). These inferences are then used to enable various applications including object tracking, automated object ownership determinations, automated object cataloging, automated misplaced object alerts, video annotations, automated conference room scheduling, semi-automated object image catalogs, object interaction query systems, etc.
摘要:
A client-based collaborative approach called WebProfiler is used for diagnosing Web transaction failures. The WebProfiler leverages end-host cooperation to pool together observations on the success or failure of Web transactions from multiple vantage points. These observations are utilized by a collaborative blame attribution algorithm to identify a suspect network entity that caused the Web transaction failure.
摘要:
A computer in a network runs a verification procedure in which it sends data packets to another computer in the network. Some or all of the data packets contain, either individually or collectively, a secret piece of information, such as a secret code. The computer then makes a determination regarding the network links between it and the other computer. If, for example, the other computer is able to respond by providing the secret piece of information back, then the computer sending the data packets concludes that the devices along the network links en route to the other computer are properly forwarding data packets.
摘要:
Communication software to aid portable computers monitor, and correct problems accessing a network through a wireless access point. The software controls the exchange of information with other portable computers in the vicinity of the wireless access point. The information exchanged may be used to diagnose problems at the wireless layer, the network layer, the transport layer or the application layer. The information exchanged may provide information about the configuration of computers that successfully or unsuccessfully communicate through the wireless access point. A portable computer receiving this configuration information may compare it to similar information about its own configuration to diagnose problems. Such software may be of particular benefit for portable computers experiencing difficulty connecting to a network at a wireless hot spot.
摘要:
Disclosed is a general model and method for computing performance bounds in multi-hop wireless networks. Rather than focusing on computing asymptotic performance bounds under assumptions of homogeneity or randomness in the network topology and/or workload, the present invention accommodates any given network, technology, interference model, routing paradigm, and workload. Using a conflict graph to formally characterize the impact of wireless interference on the performance of multi-hop wireless networks, methods for computing upper and lower bounds on the capacity of a given wireless network are detailed. Besides computing network capacity, the model and method disclosed can also enable or benefit other applications including maximizing fairness and minimizing maximum link utilization.
摘要:
Embodiments of the claimed subject matter provide an approach to managing the power state of wireless network devices in a wireless network. Embodiments include a process for modifying the scheduling of data distribution device by referencing the data buffer in an access point for data intended for a wireless network client operating under a power-saving mode, and re-arranging the distribution queue of the access point to be granted priority for a time which coincides with the delivery of a polling beacon to the power-saving wireless client. Other embodiments include a method to create virtual access points for a particular usage, and to leverage access points in a wireless network for particular usages of devices in range.