摘要:
An example method of securing a bond film to a fuel cell component includes positioning the bond film adjacent the fuel cell component and melting the bond film using thermal energy from an injection molded seal.
摘要:
An example method of securing a bond film to a fuel cell component includes positioning the bond film adjacent the fuel cell component and melting the bond film using thermal energy from an injection molded seal.
摘要:
Ejectors (22, 59) are configured to receive fresh fuel gas at the motive inlet (27, 60) and to receive fuel recycle gas at the suction inlet (29, 64, 65). Each ejector is disposed either a) within a fuel inlet/outlet manifold (13, 109) or adjacent to and integral with the fuel inlet/outlet manifold. The ejector draws fuel recycle gas directly from the fuel outlet manifold and, after mixing with fresh fuel, is expanded (34, 76) to lower the pressure and is then fed directly into the fuel inlet manifold (14, 80, 109). The ejector may be within an external manifold (13, 92) or an internal manifold (109). The ejector (59) may be formed of perforations clear through a plate (80), which is closed on either side by other plates (83, 85), or the ejector may be formed by suitable sculpture of fuel cells (12) having internal fuel inlet (109) and fuel outlet (15) manifolds.
摘要:
An example seal assembly includes a first seal that is configured to be placed between a fuel cell manifold and a fuel cell stack. The first seal establishes a recessed area within a side of the first seal that faces the fuel cell stack. The fuel cell seal assembly further includes a second seal that is configured to be placed between the first seal and the fuel cell stack within the recessed area. An example method of sealing a fuel cell interface includes holding a first seal within a groove established within a manifold and holding a second seal within a recessed area established within the second seal. The method limits flow of a fuel cell fluid using a first seal and the second seal.
摘要:
Ejectors (22, 59) are configured to receive fresh fuel gas at the motive inlet (27, 60) and to receive fuel recycle gas at the suction inlet (29, 64, 65). Each ejector is disposed either a) within a fuel inlet/outlet manifold (13, 109) or adjacent to and integral with the fuel inlet/outlet manifold. The ejector draws fuel recycle gas directly from the fuel outlet manifold and, after mixing with fresh fuel, is expanded (34, 76) to lower the pressure and is then fed directly into the fuel inlet manifold (14, 80, 109). The ejector may be within an external manifold (13, 92) or an internal manifold (109). The ejector (59) may be formed of perforations clear through a plate (80), which is closed on either side by other plates (83, 85), or the ejector may be formed by suitable sculpture of fuel cells (12) having internal fuel inlet (109) and fuel outlet (15) manifolds.
摘要:
An exemplary fuel cell assembly includes a cell stack having a plurality of cells. The cell stack has an outermost plate at each of two opposite ends of the cell stack. An end plate is adjacent the outermost plate at each of the opposite ends. A plurality of anti-rotation members at each of the opposite ends prevent relative movement between the outermost plates and the end plates. The anti-rotation members at each end are at least partially received into the end plate at the corresponding end. The anti-rotation members at each end are only partially received into the outermost plate at the corresponding end without extending through the outermost plate.
摘要:
A fuel cell power plant (36) has vertical fuel cells (102) each sharing a half of a hybrid separator plate (100) which includes a solid fuel flow plate (105) having horizontal fuel flow channels (106) on one surface and coolant channels (108) on an upper portion of the opposite surface, bonded to a plain rear side of a porous, hydrophilic oxidant flow field plate (115) having vertical oxidant flow channels (118). Coolant permeates through the upper portion of the porous, hydrophilic oxidant flow field plates and enters the oxidant flow channels, where it evaporates as the water trickles downward through the oxidant flow field channels, thereby cooling the fuel cell.
摘要:
An exemplary manifold assembly includes a gas inlet manifold configured to introduce a gas to a fuel cell. A gas outlet manifold is configured to direct gas away from the fuel cell. A drain channel connects the inlet manifold to the outlet manifold. The drain channel is configured to carry liquid from the gas inlet manifold to the gas outlet manifold.
摘要:
An exemplary flow field includes a plurality of flow channel portions. There are n inlet portions configured for introducing a fluid into the flow field. A plurality of first pass portions direct fluid flow in a first direction. A plurality of second pass portions direct fluid flow in a second direction that is generally parallel to and opposite to the first direction. A plurality of third pass portions direct fluid flow in the first direction. n outlet portions are configured to allow fluid to exit the flow field. n is an integer and a number of the portions in at least one plurality of pass portions is a non-integer multiple of n.
摘要:
An example fuel cell assembly includes a plate having channels configured to facilitate movement of a fuel cell fluid near an area of active flow of fuel cell. The channels include portions having a varying depth that extend laterally outside of the area of active flow.