摘要:
A processing temperature of thermal processing is corrected based on measurement of a first dimension of a resist pattern on a substrate from a previously obtained relation between a dimension of a resist pattern and a temperature of thermal processing, a second dimension of the resist pattern after thermal processing is performed at the corrected processing temperature is measured, a distribution within the substrate of the second dimension is classified into a linear component expressed by an approximated curved surface and a nonlinear component, a processing condition of exposure processing is corrected based on the linear component from a previously obtained relation between a dimension of a resist pattern and a processing condition of exposure processing, and thermal processing at the processing temperature corrected in a temperature correcting step and exposure processing under the processing condition corrected in an exposure condition correcting step are performed to form a predetermined pattern.
摘要:
In the present invention, a thermal plate of a heating unit is divided into a plurality of thermal plate regions, and a temperature can be set for each of the thermal plate regions. A temperature correction value for adjusting a temperature within the thermal plate can be set for each of the thermal plate regions of the thermal plate. The line widths within the substrate which has been subjected to a photolithography process are measured, and, from an in-plane tendency of the measured line widths, an in-plane tendency improvable by temperature correction and an unimprovable in-plane tendency are calculated using a Zernike polynomial. An average remaining tendency of the improvable in-plane tendency after improvement obtained in advance is added to the unimprovable in-plane tendency to estimate an in-plane tendency of the line widths within the substrate after change of temperature setting.
摘要:
In the present invention, temperature drop amounts of heating plate regions when the substrate is mounted on a heating plate are detected to detect a warped state of the substrate. From the temperature drop amounts of the heating plate regions, correction values for set temperatures of the heating plate regions are calculated. The calculation of the correction values for the set temperatures of the heating plate regions is performed by estimating steady temperatures within the substrate to be heat-processed on the heating plate from the temperature drop amounts of the heating plate regions using a correlation obtained in advance. From the estimated steady temperatures within the substrate and the temperature drop amounts of the heating regions, the correction values for the set temperatures of the heating plate regions are calculated. Based on the correction values for the set temperatures, the set temperatures of the heating plate regions are changed.