Abstract:
A pressure regulating device for gaseous and liquid fluids contains a pressure regulator with an inlet and an outlet and a pressure space between them. The pressure in that space is regulated by a shiftable main valve. An actual pressure value chamber is connected with the pressure space. A set value or desired value chamber communicates through a diaphragm with the actual value chamber. The diaphragm is movable to move the valve body for adjusting the actual pressure in the pressure space to the desired pressure in the desired value chamber. An electromagnetic set-point adjuster adjusts the pressure in the desired value chamber. The adjuster includes a set-value transducer, with an actual value sensor which is exposed to the pressure in the pressure space, and the transducer produces an electric signal corresponding to that pressure. That signal is compared with a set-value signal for establishing a signal which controls the electromagnetic set-point adjuster to set the desired value for the pressure in the desired value chamber which, in turn, will set the pressure in the actual pressure value chamber and therefore the pressure in the pressure space.
Abstract:
An atomizer has a channel through which material to be atomized, preferably comprising a transport gas and a powder, liquid or granular material, flows in a first direction. At or slightly downstream from the downstream end of the channel, preferably an atomizer gas is injected into the stream to be atomized, the injection occurring at an angle to the first direction. Preferably the atomizer gas is injected to impart a rotary motion to the stream. At the downstream end of the channel is a funnel-shaped outlet whose surface is so shaped that the stream can adhere to the interior surface of the outlet under the Coanda effect, producing an atomized cloud of transversely uniform density. A gas jacket may be used to control the shape of the cloud. The flow of both the atomizer gas and the gas forming the gas jacket is preferably adjustable in speed and direction.
Abstract:
A pneumatic conveyor for powdered to granular bulk material, having adjustable conveyance capacity, is disclosed, the capacity being adjusted by electromagnetic adjustment of a pressure regulator disposed in a conduit used to supply a propellant for drawing the bulk material from a storage container thereof and for conveying it. A supplemental supply of gas, which may be but need not be different from the propellant gas, may be provided to control the flow of propellant gas independently of the first pressure regulator. In this case, the flow of the supplemental gas may itself be controlled by a second pressure regulator. The pressure regulators operate according to the diffuser or Venturi principle. The device may be particularly advantageously applied to the spray-coating of articles with a bulk material.
Abstract:
A spray coating system for spray coating articles as they move through a spray-coating region is disclosed. The system includes a conveyor for sequentially transporting a plurality of articles through the spray-coating region along a first path. A sprayer applies a spray coating to each article as it is transported through the spray-coating region. The sprayer is movable along a second path which runs parallel to the first path. A control circuit controls the movement of the sprayer along the second path as a function of the difference between the actual and desired instantaneous positions of the sprayer.
Abstract:
An electrostatic coating gun in which there is mounted a high-voltage generator for powering charging electrodes arranged at the region of the gun muzzle. To improve maintenance of the high-voltage generator the latter is subdivided into modular-like circuit components which can be interconnected by means of detachable electrical connections and removably arranged in a chamber formed in the spray gun. The detachable electrical connections advantageously are in the form of plug connections and the chamber is preferably of elongate configuration and arranged parallel to the gun barrel in a gun body. The chamber can be closed at one end and at the other end can be closable by means of a cover.
Abstract:
Electrostatic spray appliance for coating material for the spray-coating of articles comprisesa single carrier (4) which carries a plurality of gun barrels (6, 8), so that the carrier (4), together with the gun barrels, forms spray guns. The gun barrels (6, 8) are releasably fastened to the carrier (4). The supply lines (54, 56, 58, 60, 62, 64, 78) are combined to form a line bundle and are led through a movable robot arm (68) in the longitudinal direction of the arm on the side of the carrier (4) facing away from the gun barrels (6, 8). The spray nozzles (12) are preferably slit nozzles having slits arranged obliquely relative to their theoretical connecting line.
Abstract:
Consists essentially of a gun barrel (2) and a carrier (18) which can be fitted into a recess (20) on the rear, bottom end of the gun barrel (2), and of a voltage generator module (14). Formed in the gun barrel (2) is a first channel (10) for a fluid and above it, offset axially to the rear, a straight-line second channel (16) for accommodating the voltage generator module (14). A straight-line third channel (24) through the carrier (18) enables the connection of an electrical connector (40) to the primary side of the voltage generator module (14) by a simple plug connection, without disassembly of other parts. A straight-line fourth channel (25) in the carrier (18) communicates with the first channel (10). This makes all of the channels so short that all parts can be made from plastic without manufacturing problems and can be cleaned quickly.
Abstract:
An electrostatic spray device for coating powder has a powder channel, the downstream end of which has a spray opening for the spraying of the coating powder. At least one gas channel with at least one gas outlet opening is arranged substantially in the radial center of the powder channel upstream of its spray opening, the gas outlet discharging axially in the direction toward the spray opening. At least one electrode, around which gas from the gas channel flows, is located in the gas outlet opening, the downstream electrode end of the electrode terminating substantially at the downstream end thereof. Within the powder channel, directly in front of its spray opening, a funnel-shaped powder channel section is provided for compacting the powder concentration. The gas stream injects electric charges into this section, which the stream of gas has taken up from the electrode. The spray opening preferably has the shape of a slot.
Abstract:
An apparatus is disclosed for the automatic coating of articles. The apparatus has a spray device controlled by a programmed control device. A transport device transports the articles along a predetermined path to a coating position and then away therefrom after coating. A sensor monitors the position of the article and generates signals representative thereof, preferably generating one signal each time the article moves a predetermined distance (e.g. 2 cm.) along the path. A second sensor generates additional signals to the control device when an article passes a predetermined point, also indicating which of several types of articles has been detected. The control device controls the spraying process responsive to these signals. If desired, portions of the article that are moved sequentially into the coating position can be sprayed in different manners, e.g. with the spray devices positioned or oriented differently, or using different coating materials, etc. The control device is preferably reprogrammable.