Abstract:
A method of stripping, prepping and coating a surface comprises first stripping the exiting coating from a surface, using continuous or pulsed fluid jet, followed by prepping the surface by the same fluid jet. The method also provides entraining particles into a fluid stream, if desired to generate a particle-entrained fluid stream that is directed at the surface to be stripped and prepped. The particles act as abrasive particles for prepping the surface to a prescribed surface roughness required for subsequent application of a coating to the surface. The method then entails coating the surface by electrically charging particles having the same chemical composition as the particles used to prep the surface. Finally, a charged-particle-entrained fluid stream is directed at high speed at the charged surface to coat the surface. The particles form both mechanical and electronic bonds with the surface.
Abstract:
The present invention is intended to solve a problem that a coating film has an uneven thickness in the case where a coating target 1 has a stepped portion extending in a predetermined direction on its coating surface. To solve the problem, a follow-up coating is performed along the stepped portion S extending in the predetermined direction after coating of the entire coating surface of the coating target 1 so that paint mist adheres more to a relatively-recessed side of the stepped portion S.
Abstract translation:本发明旨在解决在涂布对象物1具有在其涂布面上沿预定方向延伸的阶梯部分的情况下涂布膜具有不均匀厚度的问题。 为了解决这个问题,在涂覆目标1的整个涂覆表面涂覆后,沿着预定方向延伸的阶梯部分S进行后续涂层,使得涂料雾更多地附着到阶梯部分的相对凹入的一侧 S.
Abstract:
Provided is an inkjet recording device for performing print control by increasing or decreasing the number of adjustment ink particles, which are used according to the speed of the object being printed even when the movement speed of the object being printed is increasing or decreasing and which are uncharged particles carrying a fixed electrical charge that takes electrostatic bonding into consideration. The present invention is an inkjet recording device provided with an ink container for holding ink that is to be printed on the object being printed, a nozzle that is connected to the ink container and discharges the ink, a charging electrode for charging specified ink that has been discharged from the nozzle, a deflecting electrode for deflecting the ink charged by said charging electrode, a gutter for collecting the ink that is not used for printing, and a control unit for controlling the printing. The inkjet recording device is characterized in that the control unit performs control so that ink particles which are not used for printing and are adjacent to ink particles that are used for printing are charged by the charging electrode.
Abstract:
A nanoparticle coated hydrogel may be formed by a method of electrospraying nanoparticles on to a surface includes providing a drug and polymer combination in solvent to an inner capillary of a coaxial dual capillary spray nozzle. A coating with a drug that releases over time may be provided. Open and closed matrixes may be selectively formed to help modify time release periods.
Abstract:
Provided herein is a spray nozzle and a coating system using the same, the spray nozzle and the coating system comprising a liquid nozzle injecting liquid towards a substrate; a gas nozzle for injecting gas to collide with the liquid on an injection path of the liquid to perform a primary atomization of the liquid; and a voltage supply connected to the liquid nozzle, the voltage supply for applying voltage to the liquid nozzle to generate an electric field between the liquid nozzle and substrate to perform a secondary atomization of the liquid.
Abstract:
Exemplary painting devices for painting components, e.g., motor vehicle bodies or parts thereof, and associated exemplary methods are disclosed. An exemplary painting device may include a multi-axis painting robot positioning an atomizer, a robot controller for controlling the painting robot, and a controls enclosure comprising the robot controller. An exemplary controls enclosure may be a load-bearing column that mechanically supports the painting robot.
Abstract:
The present invention provides an apparatus and method for manufacturing a fuel cell membrane-electrode assembly by forming a catalyst layer, which has uniform distribution, excellent porosity, and excellent bondability to a polymer electrolyte membrane, on a metal roll by an electrospray process and transferring the catalyst layer to a polymer electrolyte membrane.
Abstract:
An electrospinning apparatus may include a first spinneret and a second spinneret, each including a reservoir and an orifice. The first and second spinnerets may have first and second electrical charges, respectively. The first spinneret orifice may be located substantially opposite the second spinneret orifice. The first and second spinnerets may be used to prepare a medical device defining a lumen with a proximal end, a distal end, a luminal surface and an abluminal surface. The first spinneret orifice distal end may be configured to be located outside of the medical device lumen and between about 0.1 inches and about 6.0 inches from the medical device abluminal surface. The second spinneret orifice distal end may be configured to be located in the medical device lumen and between about 0.1 inches and about 6.0 inches from the medical device luminal surface.
Abstract:
An electrostatic coating method is provided. The electrostatic coating method includes: providing a rotary atomization type coating apparatus; supplying a coating material to a rotary atomization head of the rotary atomization type coating apparatus; changing the number of rotations of the rotary atomization head to change a particle diameter of particles of the coating material; adding a solvent to the coating material so that a NV value of a coated film formed on a coated surface of a workpiece falls within a predetermined range; and electrostatically coating the coated surface with the coating material.