Abstract:
According to an example embodiment, a CAM cell included in a CAM may include a phase change memory device, a connector, and/or a developer. The phase change memory device may be configured to store data. The phase change memory device may have a resistance that may be varied according to the logic level of the stored data. The connector may be configured to control writing data to the phase change memory device and reading data from the phase change memory device. The developer may be configured to control reading data from the phase change memory device in a search mode in which the data stored in the phase change memory device is compared to the search data.
Abstract:
A method of operating a phase change random access memory (PRAM) device comprises performing a program operation to store data in selected PRAM cells of the device, wherein the program operation comprises a plurality of sequential program loops. The method further comprises suspending the program operation in the middle of the program operation, and after suspending the program operation, resuming the program operation in response to a resume command.
Abstract:
A method of operating a phase change random access memory (PRAM) device includes performing a program operation to store data in selected PRAM cells of the device, wherein the program operation comprises a plurality of sequential program loops. The method further comprises suspending the program operation in the middle of the program operation, and after suspending the program operation, resuming the program operation in response to a resume command.
Abstract:
In a nonvolatile memory device, a program operation is performed on a plurality of nonvolatile memory cells by programming data having a first logic state in a first group among a plurality of selected memory cells selected from the plurality of nonvolatile memory cells during a first program interval of the program operation, and thereafter, programming data having a second logic state different from the first logic state in a second group among the selected memory cells during a second program interval of the program operation after the first program interval.
Abstract:
In a nonvolatile memory device, a program operation is performed on a plurality of nonvolatile memory cells by programming data having a first logic state in a first group among a plurality of selected memory cells selected from the plurality of nonvolatile memory cells during a first program interval of the program operation, and thereafter, programming data having a second logic state different from the first logic state in a second group among the selected memory cells during a second program interval of the program operation after the first program interval.
Abstract:
A method of operating a phase change random access memory (PRAM) device includes performing a program operation to store data in selected PRAM cells of the device, wherein the program operation comprises a plurality of sequential program loops. The method further comprises suspending the program operation in the middle of the program operation, and after suspending the program operation, resuming the program operation in response to a resume command.
Abstract:
A method of operating a phase change random access memory (PRAM) device comprises performing a program operation to store data in selected PRAM cells of the device, wherein the program operation comprises a plurality of sequential program loops. The method further comprises suspending the program operation in the middle of the program operation, and after suspending the program operation, resuming the program operation in response to a resume command.
Abstract:
A PRAM includes a memory cell array of phase change memory cells, and a write circuit receiving an externally provided first voltage and supplying a write pulse for writing data to the memory cells in a normal operation mode. The write circuit also receives an externally provided second voltage higher than the first voltage and supplies a firing pulse to at least one firing-failed phase change memory cell.
Abstract:
A resistive memory device is provided. The resistive memory device includes word lines arranged in M rows, bit lines arranged in N columns, local source lines arranged in M/2 rows, and resistive memory cells arranged in M rows and N columns. Each of the resistive memory cells includes a resistance variable element having a first electrode connected to a corresponding bit line, and a cell transistor having a first terminal connected to a second electrode of the resistance variable element, a second terminal connected to a corresponding local source line, and a control terminal connected to a corresponding word line. The local source line is commonly connected to the second terminals of the cell transistors of the two neighboring rows.
Abstract:
Disclosed is a method of driving a multi-level variable resistive memory device. A method of driving a multi-level variable resistive memory device includes supplying a write current to a variable resistive memory cell so as to change resistance of the variable resistive memory cell, verifying whether or not changed resistance enters a predetermined resistance window, and supplying a write current having an increased or decreased amount from the write current supplied most recently on the basis of the verification result so as to change resistance of the variable resistive memory cell.