摘要:
Embodiments of methods and apparatus are disclosed for obtaining a phase-contrast digital mammography system and methods for same that can include an x-ray source for radiographic imaging; a beam shaping assembly including a filter or a tunable monochromator, a collimator, a source grating, an x-ray grating interferometer including a phase grating, and an analyzer grating; and an x-ray detector; where the source grating, the phase grating, and the analyzer grating are aligned in such a way that the grating bars of these gratings are parallel to each other.
摘要:
A digital radiography (20) detector has a first housing (18) having substantially the form factor of a film cassette and having a chest wall edge (C). The first housing (18) has an X-ray converter (70) with a detection array (26), each detector generating a signal according to an amount of radiation received. Readout electronics (74) are coupled with switching elements in the detection array for obtaining the signals therefrom. The readout electronics (74) include elements formed from crystalline silicon and are distributed toward outer edges of the first housing (18) and away from the chest wall edge (C). X-ray shielding selectively protects the readout electronics (74) and is located beneath a portion of the detection array. A second housing (40), electrically connected to the first housing (18) has a power source for the detector, readout and control electronics for obtaining signals provided from the detection array (26).
摘要:
A digital radiography (20) detector has a first housing (18) having substantially the form factor of a film cassette and having a chest wall edge (C). The first housing (18) has an X-ray converter (70) with a detection array (26), each detector generating a signal according to an amount of radiation received. Readout electronics (74) are coupled with switching elements in the detection array for obtaining the signals therefrom. The readout electronics (74) include elements formed from crystalline silicon and are distributed toward outer edges of the first housing (18) and away from the chest wall edge (C). X-ray shielding selectively protects the readout electronics (74) and is located beneath a portion of the detection array. A second housing (40), electrically connected to the first housing (18) has a power source for the detector, readout and control electronics for obtaining signals provided from the detection array (26).
摘要:
Embodiments of radiographic imaging apparatus and methods for operating the same can include a first scintillator, a second scintillator, a plurality of first photosensitive elements, and a plurality of second photosensitive elements. The plurality of first photosensitive elements receives light from the first scintillator and has first photosensitive element characteristics chosen to cooperate with the first scintillator properties. The plurality of second photosensitive elements are arranged to receive light from the second scintillator and has second photosensitive element characteristics different from the first photosensitive element characteristics and chosen to cooperate with the second scintillator properties. Further, the first scintillator can have first scintillator properties and the second scintillator can have second scintillator properties different from the first scintillator properties.
摘要:
Embodiments of radiographic imaging apparatus and methods for operating the same can include a first scintillator, a second scintillator, a plurality of first photosensitive elements, and a plurality of second photosensitive elements. The plurality of first photosensitive elements receives light from the first scintillator and has first photosensitive element characteristics chosen to cooperate with the first scintillator properties. The plurality of second photosensitive elements are arranged to receive light from the second scintillator and has second photosensitive element characteristics different from the first photosensitive element characteristics and chosen to cooperate with the second scintillator properties. Further, the first scintillator can have first scintillator properties and the second scintillator can have second scintillator properties different from the first scintillator properties.
摘要:
An apparatus for obtaining a long length x-ray image of a subject has a first x-ray detector, a second x-ray detector, and an x-ray source having an exposure directing apparatus that is actuable to direct exposure from the x-ray source towards at least a first imaging position during a first interval and a second imaging position during a second interval, with an overlap along a boundary between the at least first and second imaging positions. An x-ray detector holder has a detector translation apparatus that is actuable to translate at least one of the first and second x-ray detectors to an interim position for one of the first and second intervals and to either the first or the second imaging position for the other of the first and second intervals. A host controller is programmed to provide instructions for movement of the x-ray detector holder and exposure directing apparatus.
摘要:
A radiographic imaging apparatus for taking X-ray images of an object includes a front panel and back panel. The panels have substrates, arrays of signal sensing elements and readout devices, and passivation layers. The front and back panels have scintillating phosphor layers responsive to X-rays passing through an object produce light which illuminates the signal sensing elements to provide signals representing X-ray images. The X-ray apparatus has means for combining the signals of the X-ray images to produce a composite X-ray image. Furthermore, the composition and thickness of the scintillating phosphor layers are selected, relative to each other, to improve the diagnostic efficacy of the composite X-ray image. Alternatively, a radiographic imaging apparatus has a single panel having arrays of signal sensing elements and readout devices and scintillating phosphor layers that are disposed on both sides of a single substrate.
摘要:
An ink jet printer maintenance or cleaning system (10) for continuous ink jet printing systems having an ink collecting gutter (12) on the print head (12, 46). The maintenance or cleaning system (10) generally comprises a hydrodynamic cleaning fluid nozzle (24) disposed within the print head (12, 46), a wiper (26, 52) for engaging the print head (12, 46), and a spittoon (28, 66) for collecting discharged cleaning fluid. Relative translational movement between the wiper (26, 52) and the print head (12, 46), along with a discharge of cleaning fluid from the hydrodynamic cleaning fluid nozzle (24), cleans the ink nozzle (18) of the print head (12, 46). In a preferred embodiment, the wiper (26, 52) is disposed on the spittoon (28), which is positioned along one end of the guide shafts (16a, 16b) such that movement of the print head (12) over the spittoon (28) causes the wiper (26) to engage the print head (12) and clean the ink nozzle (18). In an alternate embodiment, the wiper (52) is disposed on a wiper shuttle (44) that is slidably attached to the print head (44). As the print head (44) moves over the spittoon (66), a pair of pins (56a, 56b) along with a corresponding pair of mechanical stops (64a, 64b), causes the print head (44) to move relative to the wiper (52), thereby cleaning the print head (44).
摘要:
A low noise digital radiography image capture system employs a two-dimensional array of pixel sites in the image capture panel with each site having an analog-to-digital converter to digitize analog charge values produced by imaging radiation directly into corresponding digital data at the site prior to read-out to subsequent digital data processing electronics thereby avoiding noise and crosstalk problems associated with high frequency read-out of analog information. Fill factor problems caused by inclusion of integrated circuitry on the pixel site are minimized by inclusion of the A/D counter on the opposite side of the substrate support for the pixel site.
摘要:
An apparatus and method of treating a recording element are provided. The apparatus includes a carrier removal station adapted to remove a predetermined percentage of carrier present in the recording element. A converting station is positioned downstream from the carrier removal station and is adapted to increase a durability characteristic of the recording element. A controller is electrically connected to at least one of the carrier removal station and the converting station so that an operating parameter of at least one of the carrier removal station and the converting station is individually adjustable.