摘要:
Provided is a method for efficiently separating nickel, cobalt and/or scandium, and impurities from an acidic solution containing impurities such as manganese, iron, zinc, and aluminum. A valuable-metal extracting agent of the present invention is expressed by general formula (1). In the formula, R1 and R2 each represent the same or different alkyl groups, R3 represents a hydrogen atom or an alkyl group, and R4 represents a hydrogen atom or a given group, other than an amino group, that bonds with an α carbon as an amino acid. In general formula (1), the inclusion of a glycine unit, a histidine unit, a lysine unit, an asparagine acid unit, or a normal methylglycine unit is preferred.
摘要:
Provided is a method for efficiently separating nickel, cobalt and/or scandium, and impurities from an acidic solution containing impurities such as manganese, iron, zinc, and aluminum. A valuable-metal extracting agent of the present invention is expressed by general formula (1). In the formula, R1 and R2 each represent the same or different alkyl groups, R3 represents a hydrogen atom or an alkyl group, and R4 represents a hydrogen atom or a given group, other than an amino group, that bonds with an α carbon as an amino acid. In general formula (1), the inclusion of a glycine unit, a histidine unit, a lysine unit, an asparagine acid unit, or a normal methylglycine unit is preferred.
摘要:
Provided is a method of producing high-purity nickel sulfate by an impurity-element removal method for selectively removing Mg from a Ni-containing solution. The method comprises a production process of producing nickel sulfate from a Ni-containing acid solution, the acid solution being treated in order of steps (1) to (3): (1) carbonation step, adding a carbonating agent into the Ni-containing solution to make Ni contained in the Ni-containing solution into a precipitate of nickel carbonate or a mixture of nickel carbonate and nickel hydroxide, thereby forming a slurry after carbonation including the precipitate and a solution after carbonation; (2) solid-liquid separation step, separating the slurry after carbonation formed in the carbonation step into the precipitate and the solution after carbonation; and (3) neutralization step, adding a neutralizing agent into the solution after carbonation separated through the solid-liquid separation step to recover Ni contained in the solution after carbonation as a Ni-precipitate.
摘要:
Provided is a method of producing high-purity nickel sulfate by an impurity-element removal method for selectively removing Mg from a Ni-containing solution. The method comprises a production process of producing nickel sulfate from a Ni-containing acid solution, the acid solution being treated in order of steps (1) to (3): (1) carbonation step, adding a carbonating agent into the Ni-containing solution to make Ni contained in the Ni-containing solution into a precipitate of nickel carbonate or a mixture of nickel carbonate and nickel hydroxide, thereby forming a slurry after carbonation including the precipitate and a solution after carbonation; (2) solid-liquid separation step, separating the slurry after carbonation formed in the carbonation step into the precipitate and the solution after carbonation; and (3) neutralization step, adding a neutralizing agent into the solution after carbonation separated through the solid-liquid separation step to recover Ni contained in the solution after carbonation as a Ni-precipitate.