摘要:
Provided is a method for efficiently separating nickel, cobalt and/or scandium, and impurities from an acidic solution containing impurities such as manganese, iron, zinc, and aluminum. A valuable-metal extracting agent of the present invention is expressed by general formula (1). In the formula, R1 and R2 each represent the same or different alkyl groups, R3 represents a hydrogen atom or an alkyl group, and R4 represents a hydrogen atom or a given group, other than an amino group, that bonds with an α carbon as an amino acid. In general formula (1), the inclusion of a glycine unit, a histidine unit, a lysine unit, an asparagine acid unit, or a normal methylglycine unit is preferred.
摘要:
Provided is a method for efficiently separating nickel, cobalt and/or scandium, and impurities from an acidic solution containing impurities such as manganese, iron, zinc, and aluminum. A valuable-metal extracting agent of the present invention is expressed by general formula (1). In the formula, R1 and R2 each represent the same or different alkyl groups, R3 represents a hydrogen atom or an alkyl group, and R4 represents a hydrogen atom or a given group, other than an amino group, that bonds with an α carbon as an amino acid. In general formula (1), the inclusion of a glycine unit, a histidine unit, a lysine unit, an asparagine acid unit, or a normal methylglycine unit is preferred.
摘要:
A nickel recovery process capable of decreasing nickel remaining in a byproduct by recovering nickel from the byproduct of electrolytic nickel manufacturing process by chlorine-leaching, and also, capable of simplifying a cementation step simultaneously, is provided. In a nickel recovery step S60, a nickel recovery step S70 and a nickel recovery step S80, nickel is recovered in each step from S0 slurry, residue flaker and chlorine-leached residue, which are byproducts of electrolytic nickel manufacturing process by chlorine-leaching, by using an aqueous solution containing 80 g/L to 390 g/L of chlorine and 30 g/L to 70 g/L of copper.