Real-time risk prediction during drilling operations
    5.
    发明授权
    Real-time risk prediction during drilling operations 有权
    钻井作业中的实时风险预测

    公开(公告)号:US09582764B2

    公开(公告)日:2017-02-28

    申请号:US14429072

    申请日:2013-10-25

    CPC classification number: G06N5/048 E21B41/00 G01V11/00 G06N99/005

    Abstract: Systems and methods for real-time risk prediction during drilling operations using real-time data from an uncompleted well, a trained coarse layer model and a trained fine layer model for each respective layer of the trained coarse layer model. In addition to using the systems and methods for real-time risk prediction, the systems and methods may also be used to monitor other uncompleted wells and to perform a statistical analysis of the duration of each risk level for the monitored well.

    Abstract translation: 用于钻井操作中的实时风险预测的系统和方法,其使用来自未完成井的实时数据,经过训练的粗糙层模型和经训练的粗糙层模型的每个相应层的训练的细层模型。 除了使用系统和方法进行实时风险预测之外,系统和方法还可用于监测其他未完成的井,并对监测井的每个风险水平的持续时间进行统计分析。

    Attribute importance determination
    6.
    发明授权
    Attribute importance determination 有权
    属性重要性确定

    公开(公告)号:US09581726B2

    公开(公告)日:2017-02-28

    申请号:US14420271

    申请日:2013-12-05

    Abstract: A system and method for determination of importance of attributes among a plurality of attribute importance models incorporating a segmented attribute kerneling (SAK) method of attribute importance determination. The method permits operation of multiple attribute importance algorithms simultaneously, finds the intersecting subset of important attributes across the multiple techniques, and then outputs a consolidated ranked set. In addition, the method identifies and presents a ranked subset of the attributes excluded from the union.

    Abstract translation: 一种用于在包含属性重要性确定的分段属性内核(SAK)方法的多个属性重要性模型中确定属性的重要性的系统和方法。 该方法允许同时操作多个属性重要性算法,通过多种技术找到重要属性的相交子集,然后输出综合排名集合。 此外,该方法识别并呈现从联合排除的属性的排名子集。

    Real-Time Risk Prediction During Drilling Operations
    7.
    发明申请
    Real-Time Risk Prediction During Drilling Operations 有权
    钻井作业期间的实时风险预测

    公开(公告)号:US20150356450A1

    公开(公告)日:2015-12-10

    申请号:US14429072

    申请日:2013-10-25

    CPC classification number: G06N5/048 E21B41/00 G01V11/00 G06N99/005

    Abstract: Systems and methods for real-time risk prediction during drilling operations using real-time data from an uncompleted well, a trained coarse layer model and a trained fine layer model for each respective layer of the trained coarse layer model. In addition to using the systems and methods for real-time risk prediction, the systems and methods may also be used to monitor other uncompleted wells and to perform a statistical analysis of the duration of each risk level for the monitored well.

    Abstract translation: 用于钻井操作中的实时风险预测的系统和方法,其使用来自未完成井的实时数据,经过训练的粗糙层模型和经训练的粗糙层模型的每个相应层的训练的细层模型。 除了使用系统和方法进行实时风险预测之外,系统和方法还可用于监测其他未完成的井,并对监测井的每个风险水平的持续时间进行统计分析。

Patent Agency Ranking